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English Abstract

A frontal system with extremely heavy rainfall was over Northern Taiwan on 11
June 2012. Through multiple analyses of three different Doppler radars, three-
dimensional wind fields are retrieved over the ocean and the complex terrain of Taiwan
by Wind Synthesis System using Doppler Measurements (WISSDOM). The pressure
and temperature structure are derived from the retrieved wind fields by Terrain-
Permitting Thermodynamic Retrieval Scheme (TPTRS). The migration and intensity of
the barrier jets at convective scales are revealed by a vorticity budget analysis. It is
found that, taken together, the stagnated Mei-Yu front, the location and the strength of
the barrier jet and cold pool, as well as orographic blockage over northern Taiwan
explain the formation of this quasi-stationary and extremely heavy rainfall case.

This study examined the feasibility of assimilating 3D temperature and water-
vapor information in addition to radar observations in a multiscale weather system.
Using the WRF-LETKF Radar Assimilation System (WLRAS), we performed three
sets of observing system simulation experiments to assimilate radar observations with
or without thermodynamic variables obtained using different methods. First,
assimilating the radar data for 2 h showed better structure and short-term forecast than
1 h. Second, we assimilated radar data and thermodynamic variables from a perfect
model simulation. The results of the analysis revealed that when a precipitation position
error was present in the background field, assimilating temperature and/or humidity
information could correct the dynamic structure and shorten the spin-up assimilation
period, resulting in substantial improvements to the quantitative precipitation forecast.
Third, we applied a thermodynamics retrieval algorithm for a feasibility study. With a
warm and wet bias of the retrieved fields, assimilating the temperature data had
significant impact on the final analysis at the mid-level of stratiform areas and the
forecast of the heavy rainfall was consequently improved. Assimilating the water vapor
information helped reconstruct the range and intensity of the cold pool near the surface,
but the improvement of 3-h rainfall forecast was limited. The optimal results of analysis
and short-term forecast were achieved when both the retrieved temperature and water
vapor fields were assimilated. In conclusion, assimilating thermodynamic variables in
the precipitation system is feasible for shortening the spin-up period of data assimilation

and improving the final analysis and short-term forecast.



3®3

bd a A BRLT BEG B @R A F R BRI L
C-POL F & 4ck|k] 2 47 ch TEAM-R iFiF a3 31 o g BriRip RE 7 fof £ 4
PoFFRAGTRIBERRE AT A pREBZAETH ¥ AL
g4 Fen NS A F R b A w BHEFE F O B A o EARET Y
Wb e RHM S X ANEF TR LG EESAFTERE RO

& B % 2012~ 611(# ﬂ»ﬁz—}) A w e h F A G R s X - S eh] o H
S HE L BAAGEZ P AR BRIl R - BRI - 2 AL A

X

=

BEOEH - AMITE LG B - KPR kBT %*%ﬁ\g
Thome FERSY L -2y R i X3y DY &
PR A & 5 (G eh % - LT 4 AN PR G IR DR R R T
FLenfe (o A RS g A SR LR g o A e B
2 BALPRE L ITAREAEY > BAF S8 L ERBIER o KRBT G
WO R A E;Fmgg;;lﬁ,ﬂfph FoREAALL P pFiE o REE NMLT A
ﬁﬁﬁﬁ’&whﬁwﬁﬁ%ﬁ—{?$ T4 EAN G BRI g

TEF RAALAPM T EAR

CRAR REHDA S X 30 F R L LG EF R 7 R
BORA LRI ERY 04 P KL IR S 5 3 PR o 3R TR X
PO B A FE - ERFLGES TR FOLT 3 o g L Fo A2
ot e RE TR » FEFHE S R BRHTT F R P RAE B

A-
4%

BHERxIRER g RGO XAEFREED L EDP L E PR

B
,—rgikb 7"“],@#?'&#5@ ,]*L_\eﬁxfeﬂé”l"lﬁfi E"ﬁ‘é’gft’ Z e TEAM-R 5T~
beor 2377 INCARS-Pol 9 4% BB & FHn 2EF % T 23 RSk v e

FUHRERHAPF 2P AR ZHEEICRFL R P REF - PEIEF S EFLE
L EEHE L BRI SRR

Boisd il MNEOREBR BRI LI BEEAR 0 F L 5T &R HhE
Ao A RGe Ao R HRABEART S A B P AR - B AR b
A BB R o A RRG RS DR WIFp L A FhS o PR
B 2R e G A~ PR oo

VI



Table of contents

P2 B B e v
ENGLISh ADSIIACT ....ccuviiiiiiiiiecie ettt ettt st aeebeessaeenseeense e v
R BB ettt ettt bttt e a e bttt ea e e bt et et e bt e bt e teshee b et VI
Table Of CONMEENES ......eeiuiiiiieeie ettt VII
LSt OF FIGUIES ...evviiiiiceieeieeeeeee ettt et ettt eerbeesaaeenneesnnas IX
LSt OF TabIES ..ot XV
Chapter 1  Introduction and MoOtIVAtION...........cccviieiiieeiieeeie e 1
L1 INEEOAUCHION ...ttt et sttt st e 1

1.2 Review of radar assimilation ............cocceeiieriiiiiiniiee e 3

1.3 Motivation of the StudY ........coceeiiiiiiiiii e 6
Chapter 2 Methodology and Data Operator............cccceeeveerieeeieeriienieeieeeieeveesve e 9
2.1 Wind Synthesis System using Doppler Measurements (WISSDOM) ............. 9

2.2 Terrain-Permitting Thermodynamic Retrieval Scheme (TPTRS).................. 11

2.3 Moisture and temperature adjustment scheme...........c.cceeeevveerciieencieeenieeennee. 13

2.4 WRF-LETKF Radar Assimilation System (WLRAS)......ccccccviiiiiiiiienne 14

2.5 Observation data and OPErator ............cccueevuieriiieriieeiiierie et 18
Chapter 3 Case study: Mei-Yu front on 11 June 2012 .......ccccoeveiiiviiieniiienieeeeens 21
3.1 CASC TEVICW ...ttt ettt ettt et ettt e st e et e et e e sseeenbeesseeenbeeneeenseennns 21

3.2 Evolution of ReflectiVity.......ccceeiiiiiiiiiiiiieiieeeee e 22

3.3 Result of retrieval by WISSDOM and TPTRS at 1400 UTC ........................ 24

3.4 Evolution of Enhanced Barrier jet ..........cccovviiiiiiiiiiiienieeeeeeeee e 26

3.5 Schematic diagrams of the extremely heavy rainfall event ........................... 27
Chapter 4 Experiments Design and Validation SCOTES .........ccceeevveeeceveenciieenireeenieeens 30
4.1 EXPEriments deSIZN.......eeruieriieriienieeiieeieeiee et eiee e et esieesteesiaeenbeessneeseesneeens 30

(a) OSSE experimental design with WRF .........cccoociiiiiiiiiiiiiieee, 30

(b) Synthetic radar data and thermodynamic variables..............ccceeevureenneee. 31

(c) Thermodynamic variables retrieved via TPTRS .........ccocoeriiiiiennnnen. 32

(d) EXPEriments SETUP ....cveeeuveeriieeiieiieeiieeiee et eieeeiteeteeseteeteesaeesbeeseeeeneeas 34

4.2 Validation SCOTES ......cccuetruieriiiiiiieniteeiie et esiee sttt ettt e st esaeesbeesbeesbeesaeeens 35

(a) Ensemble spread (SPD) and Root mean square error (RMSE).............. 35

VII



(b) Error Correlation Coefficient (COOT).......cccveeviieriieriienieeiieeieeieenve e 35

(c) The relative Spatial Correlation Coefticient (RSCC).......cceevvvreenrenneee. 36

(d) Fractions SKill Score (FSS) ... 36

Chapter 5 Result of OSSE and retrieval variables assimilation..........cc..cocceveevuennene 37
5.1 Ensemble background error analysis ..........cccveerveeeiieeeiieeeiieeeiie e 37

5.2 Performance of the CyCling ProcCess ........cceevveeeiieeeiieeeiieeeee e eevee e 38

5.3 Analysis and Short-term forecast 0f OSSES ........cccccoevieriiieiieniieeieeieeee 40

(a) Performance of Final Analysis ......c.cccccveeviieeiiieeieeeeeeee e 40

(b) Performance of short-term forecast...........ccceeevveeiiieecieeecieeeee e 45

5.4 Results of retrieval variables assimilation ..........ccccceceveereniienienennienienenee, 47

(a) Performance of analysis ..........cceeoieriiiiieiiiiiiecceee e 47

(b) Performance of short-term forecast...........ccceevvveevieeeiieeeieeeee e 49

Chapter 6 Conclusions and Future Work .............ccccoeviieiiiiiiiniiiiiieecesee e 51
6.1 CONCIUSIONS....coutiiiiietiieitetee ettt ettt ettt et e et e saeeeabeeees 51

6.2 FULUIE WOTK ....ooiiiiiiei e 53
RETEIENICES ...ttt et e 56
FIGUTES ..ttt et sttt ettt et 68
TADLES .t ettt ettt et e it e et e nateebeenneeens 95

Vil



Fig.

List of Figures

2-1. (a) Horizontal localization: location of the model variable (black dot),
locations of observation data within the localization area (gray triangles) or outside
(white triangles), localization distance (double-headed arrow), localization range
(dashed line); (b) Vertical localization: location of the model variable (black dot),
localization distance (double-headed arrow), localization area (dashed line and

gray shaded).

Fig. 3-1. Weather maps at 1200 UTC 11 June 2012: (a) surface; (b) 850-hPa, black

dashed line is trough.

Fig. 3-2. The composite reflectivity of RCWF radar on 11 June 2012 at: (a) 1200 UTC;

Fig.

(b) 1230 UTC; (c) 1300 UTC; (d) 1330 UTC; (e) 1400 UTC; (f) 1430 UTC; (g)
1500 UTC; (h) 1530 UTC; (1) 1600 UTC. C1, C2, C3 and C4 indicate the main
convection of the precipitation system (reflectivity > 40 dBZ) in different stages.
S1, S2 and S3 are the line convection that occurred in different stages. (j) The
contours of 40 dBZ shows repeated Y-shaped reflectivity at 1430 UTC and 1530
UTC.

3-3. Retrieved result at 1400 UTC 11 June 2012: (a) vertical velocity (colour
shaded, unit: m s-1) at 5 km and convergence area (green contour, interval is
0.5x10-3 s-1) at 1 km; (b) horizontal wind speed (unit: m s-1 ) and wind vector at
1 km height (blue colour shows wind retrieved with radar observations, and grey
colour indicates retrieved wind beyond radar observations); (c) vertical cross-

section of radar reflectivity (colour shaded, unit: dBZ) and the horizontal wind
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speed (contour lines); (d) cross-section of vertical wind (colour shaded, unit: m s-
1) and wind vector relative to the system motion. Retrieved thermodynamic
perturbations (e) pressure at 2 km; (f) temperature at level 2 km (shaded), and wind
direction of relative background at 1-km height (vector).

Fig. 3-4. (a) Barrier jet (J1), the vertical vorticity fields (colour shaded, interval is 4*10-
4 571 and vertical vorticity tendency (contour lines, 0.5 and -0.8*10-6 s2) on 1-
km level from WISSDOM at 1400 UTC; (b) Vertical vorticity budget of 1-km
height at 1400 UTC: tilting term (colour shaded, interval is 0.5*10-6 s!) and
stretching term (contour lines, 0.2 and 0.5 *10-6 s™); (c) same as (a), but at 1530
UTC and J2 indicates the location of the barrier jet; (d) schematic diagram to show
the migration and enhancement of the barrier jet. Thinned arrows present the
strength of the wind below 3-km height, vortex line is stretched by the upward
motion (blue arrow) and induced a pair of vorticity tendency, pink arrows with
dashed line is the original barrier jet and solid line is the evolved barrier jet; H and
L refer to the location of high and low pressure, respectively.

Fig. 3-5. Schematic diagrams to demonstrate the mechanism of the extremely heavy
rainfall event. (a) Pre-frontal convection forms a TS-type precipitation over the
ocean, and the line convection is triggered due the cold outflow encountering a
warm and humid southwesterly flow; (b) the strengthened cold pool and enhanced
barrier jet repeatedly triggered the Y-shaped echo line convection, then merge with
the main convection to form a PS-type precipitation over northern Taiwan. The
location of the Mei-Yu front and the warm/humid southwesterly flow (red arrow)

illustrate the environmental condition of the synoptic scale over Taiwan. The



location of the cold pool and the orography in northern Taiwan blocks the
displacement of the main convection.

Fig. 4-1. Domain nesting of the WRF model with horizontal grid spacing of 27 (251 %
261 points), 9 (337 x 271 points), and 3 (223 x 232 points) km, respectively.

Fig. 4-2. Reanalysis fields of (a), (b) potential height (blue line), potential temperature
(red line), and wind vector (gray vector) at 850-hPa; (c), (d) water vapor mixing
ratio at 925-hPa at 0000 UTC 11 June 2012. (a), (¢) ERA-interim for the truth run;
(b), (d) NCEP for the NoDA and OSSE experiments.

Fig. 4-3. Reflectivity at 2.5-km height (shaded) in d03 shows the rainband (black-
dashed line) located at northern Taiwan at 1400 UTC in (a) “truth” simulated from
the initial condition ERA-interim 0.75° x 0.75° and (b) NoDA simulated from the
initial condition NCEP-FNL 1° x 1°. The black solid line in 5a is a vertical cross-
section portion between (120.75°E, 25.93°N) and (121.18°E, 24.64°N). The dotted
square shows the focused area in the study.

Fig. 4-4. The super observation points (gray) of simulated observations averaging 5-km
in the radial direction and 50 in the azimuthal direction on every sweep from
RCWF (121.77°E, 25.07°N) and NCU-CPOL (121.18°E, 24.97°N). The gray
marks (*) are the radar locations of RCWF (white) and NCU-CPOL (black).

Fig. 4-5. Temperature perturbation (a), (b) at 0.5-km height; (c), (d) at 1.5-km height;
(e), (f) Vertical cross-section of temperature perturbation along dashed line in (a)
at 1400 UTC. (a), (c), (e) are truth; (b), (d), (f) are Retrieved by TPTRS at 1400
UTC.

Fig. 4-6. (a) Vertical cross-section of retrieved temperature perturbation along dashed
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line in (b) at 1400 UTC. (b) Retrieved water vapor at 1.5-km height at 1400 UTC.
(c) Vertical profile of retrieval temperature RMSE and BIAS. (d) Scatter plot of
water vapor between truth model and retrieved by TPTRS.

Fig. 4-7. The schematic design of the study strategy. The single lines (solid and dotted)
refer to a single run, while the triple lines represent ensemble simulations. The
dotted lines indicate the model spin-up period from 0000 UTC 11 June 2012 to
1200 (or 1300) UTC. The gray area indicates the data assimilation period for two
(or one) hours experiment and the dashed vectors show the frequency of
assimilating data every 15-min.

Fig. 5-1. The ensemble spread on 2500 m height at 1300 UTC. (a) Z; (b) T; (¢) Qv; (d)
Qr; (e) Us (D V.

Fig. 5-2. Auto-correlation on 2500 m. Blue mark (*) means the location of reference
variable that shows on the first variable of title. (a) U; (b) V; (¢) Qv; (d) T.

Fig. 5-3. Root mean square error in assimilation period (a) Z (unit: dBZ); (b) Vr (unit:
m s); (¢) T (unit: K); (d) Qv (unit: g kg™).

Fig. 5-4. The low-level convergence field (shaded, units: 10-4 s-1) and wind vectors
are shown at a 1-km height of 1400 UTC and focus on a small area of northern
Taiwan from d03: (a) Truth; (b) NoDA; (¢) Z; (d) Vr; (e) ZVr; (f) ZVr2h; (g) ZVrT,;
(h) ZVrQv; (1) ZVrTQv; (j) ZVrTQv2h.

Fig. 5-5. Reflectivity field on 2.5-km height at 1400 UTC. (a) Truth; (b) NoDA; (¢) Z;
(d) Vr; (e) ZVr; (f) ZVr2h; (g) ZVrT, (h) ZVrQv; (1) ZVrTQv; (j) ZVrTQv2h.

Fig. 5-6. Vertical cross-section of reflectivity (shaded colors) at 1400 UTC as the black

solid line in Fig. 5a: (a) Truth; (b) NoDA; (¢) Z; (d) Vr; (e) ZVr; (f) ZVr2h; (g)
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ZVrT; (h) ZVrQv; (1) ZVrTQv; (j) ZVrTQv2h.

5-7. Vertical velocity (shaded) and Potential temperature perturbation (contours,
solid lines are positive values while dashed line are negative values with contours
of -1.5,-1.2, -0.5, 1.0, 3.0, 5.0 K) at 1400 UTC shown on vertical cross-sections
as in Fig. 5a: (a) Truth; (b) NoDA; (c) Z; (d) Vr; (e) ZVr; (f) ZVi2h; (g) ZVrT; (h)
ZVrQv; (1) ZVrTQv; (j) ZVrTQv2h.

5-8. The mixing ratios of graupel(Qg), snow(Qs), and rain(Qr): (a) Truth; (b)
NoDA; (¢) Z; (d) Vr; (e) ZVr; (f) ZVr2h; (g) ZVrT; (h) ZVrQv; (i) ZVrTQv; (j)
ZVrTQv2h.

5-9. Improvement of final ayalysis at 1400 UTC in spatial correlation coefficient
of hydrometer variables compared with Exp. ZVr. Qg, Qs, and Qg refer to the
mixing ratios of graupel, snow, and rain.

5-10. Rainfall accumulation at northern Taiwan in d03 from 1400 UTC to 1500
UTC. (a) Truth; (b) NoDA; (c) Z; (d) Vr; (e) ZVr; (f) ZVi2h; (g) ZVrT; (h) ZVrQv;
(1) ZVrTQv; (j) ZVrTQv2h.

5-11. Rainfall accumulation at northern Taiwan in d03 from 1400 UTC to 1700
UTC. (a) Truth; (b) NoDA; (c) Z; (d) Vr; (e) ZVr; (f) ZVi2h; (g) ZVrT; (h) ZVrQv;
(1) ZVrTQv; (j) ZVrTQv2h.

5-12. Fractions Skill Score (FSS) of (a) 1-hr, (b) 3-hrs and (c) 6-hrs rainfall
accumulation from 1400 UTC by deviation distance 24-km.

5-13. Final analysis fields at 1400 UTC. ZVrTR (a, d, g), ZVrQvR (b, e, h), and
ZVT1TQVR (c, 1, 1). (a), (b), (c) same as Fig.12. (d), (e), (f) same as Fig.14. (g), (h),

(1) same as Fig.15.
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Fig. 5-14. Rainfall accumulation from 1400 UTC for 1-h (a), (b), and (c); for 3-h (d),
(e), and (f). ZVrTR (a, d); ZVrQvR (b, e); ZVrTQVR (c, 1).
Fig. 5-15. FSSs of (a) 1-h, (b) 3-h, and (c) 6-h rainfall accumulation from 1400 UTC

by deviation distance of 24-km.
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Chapter 1
Introduction and Motivation

1.1 Introduction

In recent years, short-term heavy rainfall has often caused flooding and disasters.
Such systems have small scales and short life cycles, and are affected by complex
terrain in Taiwan, resulting in more complex interactions. The small-scale system has
already occurred, and the development of the small-scale weather system is relatively
nonlinear, so there is still a high degree of uncertainty in the numerical model. Among
the observational data, meteorological radars provide real-time high temporal and
spatial resolution data to understand the real-time development of small-scale systems
and improve initial condition by assimilation which can effectively improve numerical
models and reduce the risk.

According to the research on radar data assimilation, most of the reflectivity and
radial velocity observed by radar have been successfully assimilated. Kerr et al. (2015)
designed an Observing System Simulation Experiment (OSSE) experiment to try to
assimilate radar data and then add satellite observations of cloud top temperature
assimilation. The results showed that assimilating cloud top temperature alone cannot
have a significant effect on rainfall forecasting because the rainfall system is mainly
affected by radar data assimilation. However, there is a clear positive improvement for
snow and soft hail when assimilating cloud top temperature. Ge et al. (2013) used the
OSSE to simulate super cellular storms, and used the ARPS 3DVAR assimilation

system to explore the importance of assimilating different meteorological variables for



convective-scale analysis fields. The results show that in the assimilation observation
data at the convective scale, the most important is the horizontal wind, and the second
is the water vapor and temperature field. The author mentioned that whether this
conclusion is the same conclusion for different assimilation systems (such as 4DVAR
and EnKF) remains to be confirmed.

Extending from radar observations and further through inversion techniques,
additional information at the convective scale can be obtained. As mentioned in the
literature, many studies have empirically converted radar observations into humidity
field information for assimilation (Liou et al. 2003; Caumont et al. 2010; Wattrelot et
al. 2014; Jacques et al. 2018). A moisture adjustment method was based on that of Liou
et al. (2014), who proposed a simple and effective approach for adjusting temperature
and moisture fields through iterative methods. In fact, the refractivity that can be
observed by weather radar is a function of temperature and humidity. Radar
observations are not only additional observational information, but are constantly being
studied and improved (Nicol et al. 2013; Feng and Fabry 2016). At the same time, in
the past, many countries have also tried to assimilate the additional radar observations
besides reflectivity and radial wind into small and medium-scale systems. (Montmerle
et al. 2002; Gasperoni et al. 2013; Nicol et al. 2014; Seko et al. 2017; Do et al., 2022).

Boutter (1994) mentioned that, especially in areas where observational data are
sparse, observational information follows characteristics related to background errors.
Zhang (2005) used an extratropical cyclone case to explore the mesoscale error
structure of variables related to heat and dynamics and observed that the growth of the

error can be interpreted by the mechanism of atmospheric dynamic balance, showing



that the flow field is flow-dependent. The characteristics and anisotropy of moisture
processes are the main sources of error growth; Chung et al. (2013) used the Canadian
ensemble Kalman filter and its forecasting system to explore the short-term situation-
dependent structure of forecast errors at the convective scale. The results show that the
error structures of rainfall and non-rainfall trends are significantly different, and the

structure in the vertical direction is obviously affected by cloud physics.

1.2 Review of radar assimilation

The information provided by meteorological radar observations includes wind
field and precipitation has high temporal and spatial resolution. For the small and
medium-scale convective precipitation system, in addition to having a good monitoring
function, in the research and development of radar meteorology, it is further discussed
how to improve the real-time and very short-term weather forecast. Using simple
extrapolation of radar reflectivity (Browning et al. 1982; Germann and Zawadzki 2002;
Mandapaka et al. 2012), the location and intensity of precipitation in 0-6 hours can be
estimated. The advantage of the extrapolation method is that it only needs to use very
few computer computing resources. However, if the weather system has obvious
development and dissipation in a very short time, the quantitative precipitation
forecasting ability will decrease quickly, so the radar reflectivity extrapolation method
is limited in 0~2 hours.

In order to overcome the limitations of the radar reflectivity extrapolation, the
concept of data assimilation has been proposed. The meteorological radar observation

data and numerical forecasting model are objectively used to obtain accurate mesoscale



and small-scale weather analysis fields. Radar data assimilation methods are mainly
divided into three systems, three-dimensional variational scheme (3DVAR), four-
dimensional variational scheme (4DVAR) and ensemble Kalman filter (ensemble
Kalman filter, EnKF). 3DVAR is the most common data assimilation method for
operating centers due to its high stability and low computing resources. The
disadvantage of this approach is that it presents fixed background error information
from climate statistics and is assimilated over all observations at a single time. Xiao et
al. (2005) used the MMS5 model to assimilate single-radar radial winds to improve
rainfall forecasts for frontal rainbands. Xiao and Sun (2007) and Sugimoto et al. (2009)
found that assimilating radar echoes is also helpful for short-term quantitative
precipitation forecasting.

4DVAR further utilizes a large number of computing resources and considers the
development of time and space. This method takes into account the prediction of error
structure of flow field dependence by the adjoint model. However, this method needs
to write the adjoint model, and requires large computing resources. By analyzing and
diagnosing different cases, both the analysis field and the short-term forecast
performance have been improved to a considerable extent. VDRAS (Variational
Doppler Radar Analysis System) system is the leader of 4DVAR radar data assimilation
in recent years (Sun and Crook 1997, Sun and Crook 2001, Chang et al. 2014a, Chang
et al. 2016, Tai et al. 2017). In addition, NOAA (National Oceanic and Atmospheric
Administration) uses the Rapid Update Cycle (RUC, Benjamin et al. 2004) model to
assimilate radar echoes every hour to obtain a more accurate mesoscale initial field,

which is provided for the high-resolution operation mode of 3 kilometers horizontally



High Resolution Rapid Refresh (HRRR, Benjamin et al. 2016) to enables forecasting
techniques to reach 3-6 hours.

Many studies have used the Ensemble Kalman Filter (EnKF) system for
assimilation. Ensembles can provide more information than a single deterministic
forecast, and this approach has been extensively tested at different meteorological
scales (Evensen 1994, Bishop et al. 2001, Anderson 2001, Whitaker and Hamill 2002,
Hunt et al. 2007). Compared with the four-dimensional variational method in the
application of medium and small scales, its advantages are: (1) its method does not
require complex adjoint models; (2) it can maintain the medium and small scale flow
field dependencies in the assimilation process (The properties of flow-dependent)
(Chung et al. 2013, Ménétrier et al. 2015); (3) ensembles provide the uncertainty of
numerical models in analysis and forecast. Therefore, many studies used this method
to assimilate radar observation for analysis and discussion. Snyder and Zhang (2003)
used the EnKF system for the first time to assimilate radar data for OSSE experiments.
Tong and Xue (2005) used the Advanced Regional Prediction System (ARPS; Xue et
al. 2006) model to assimilate the echoes and found that directly updating the relevant
forecast variables yielded the best analysis results. Zhang et al. (2009) used the WRF-
EnSRF system to assimilate radar data and applied it to a multi-scale weather case study
to effectively improve hurricane track and intensity forecasts in the United States.
Aksoy et al. (2010) used the DART (Data Assimilation Research Testbed) system with
an ensemble adjustment Kalman filter (EAKF; ensemble adjustment Kalman filter,
Anderson 2001) to assimilate radial winds and reflectivity to accurately predict and

analyze different convection patterns. Tsai et al. (2014) used the WRF-LETKF Radar



Assimilation System (WLRAS, WRF-LETKF Radar Assimilation System), through
OSSE experimental design, according to the characteristics of the spatial correlation
distribution of different variables, designed the mixed localization radius, in Taiwan,
which has a complex terrain environment, could effectively improve the short-term
rainfall forecasting ability of typhoon Morakot. In addition, researches on the hybrid
method (Hamill and Snyder 2000, Wang et al. 2007, Li et. al 2012, Gao and Stensrud
2014) that combine the variational method and the ensemble Kalman filter are desirable

to obtain the optimized initial field.

1.3 Motivation of the study

In recent years, many studies have conducted on assimilating additional high-
resolution information with radar data to improve storm-scale numerical weather
prediction (NWP). Using a 3DVar system with observing system simulation
experiments (OSSEs), Ge et al. (2013) investigated the impact of assimilating different
state variables at the convective scale; their results demonstrated that dynamic variables
such as horizontal wind play a major role in analyzing storm structure. Moreover, they
revealed that thermodynamic variables such as temperature and humidity are more
effective than hydrometeor variables for reconstructing severe storms because
hydrometeors are primarily indicators of thermodynamical processes; without
supporting wind, temperature, and humidity information, hydrometeors rapidly
evaporate or precipitate. Many studies have attempted to include thermodynamic
information into radar data. For example, Wattrelot et al. (2014) assimilated retrieved

humidity profiles and radar data by using a 1D + 3DVar assimilation method. Their



results revealed the positive impact of analysis and short-term forecasts. Kerr et al.
(2015) evaluated the effect of assimilating both cloud-top temperature from satellite
data and radar observations, whereas Caumont et al. (2016) assimilated retrieved
temperature and humidity profiles from ground-based microwave radiometers. Other
strategies, such as using vertical integrated liquid water content or differential
reflectivity columns to modify humidity or temperature or both, have recently been
tested (Carlin et al. 2017; Lai et al. 2019), demonstrating substantial utility in terms of
high-impact weather events.

The potential impact of assimilating both radar data and retrieved thermodynamic
information remains unclear, and most studies have focused on areas of strong
convection. Themens and Fabry (2014) described the potential benefit of providing
temperature and humidity information over 3D domains for mesoscale forecasting, and
high-density thermodynamic information has been successfully retrieved from radar
data (Liou et al. 2019; Feng and Fabry 2016; Ellis and Vivekanandan 2010) despite
some concerns related to accuracy and bias.

Since the impact of assimilating 3D thermodynamic variables inside severe
weather systems had not been completely investigated, we conducted a series of OSSEs
to explore this issue for both analysis and short-term forecast. First, high-density
temperature and/or humidity fields were assimilated along with radar data simulated
from a nature run. This was to evaluate and illustrate the added value of assimilating
thermodynamic information to the ensemble-based DA system without the uncertainty
due to thermodynamic retrieval algorithms. Second, a terrain-permitting

thermodynamic retrieval scheme (TPTRS; see Liou et al. 2019) was applied to retrieve



temperature and water vapor assimilated to the DA system. Considering the uncertainty
of the retrieval scheme, it is able to understand the feasibility of assimilating the
thermodynamic information. A case study of a frontal system was selected to examine
and demonstrate the impact of assimilating these observations in different areas of the
precipitating weather system. The EnKF type assimilation system WLRAS was used in
this study. In the assimilation of radar data at the convective scale, an ideal case
experiment are used to explore the effect of adding a thermodynamic field (temperature,
water vapor) in addition to the assimilation of radar reflectivity and radial wind
information, and conduct a series of assessments of the impact and benefits of severe

weather systems.



Chapter 2

Methodology and Data Operator

2.1 Wind Synthesis System using Doppler Measurements (WISSDOM)
In this study, a variational-based algorithm (Liou and Chang, 2009 and Liou et al.
2012) is used to retrieve the three dimensional wind fields with multiple Doppler radars.
The system is named Wind Synthesis System using Doppler Measurements
(WISSDOM, Liou et al. 2016). In Liou and Chang (2009), the uncertainties of the
retrievals have been tested and validated with idealized experiments, and results show
that the errors of horizontal winds are very small; larger uncertainty remains in vertical.
In addition, the accuracy of the retrieved winds in real cases have been verified with an
independent radar. This algorithm has been applied to diagnose different real case
studies (Liou et al. 2013, Lee et al. 2014, and Liou et al. 2016). Brief descriptions and
major features of WISSDOM are given as follows. There are five (weak) constraints in
the cost function of WISSDOM for obtaining the optimal three dimensional winds, and
they are:
(1) The geometric relation to connect the retrieved Cartesian wind components and the

radial velocity directly measured by the individual radar
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where the subscripts 7 (from 1 to 2) indicates the number of time levels, and i (from



1 to N) is for the number of radar sites. (V});, is the radial winds observed by ith
radar at time 7, (u;, v;, w,) mean the three-dimensional wind at the location (x,),z)
at time ¢, and Wy, represents the terminal velocity, which can be estimated using
radar reflectivity data. (P!, ij, P}) denote the coordinates of the ith radar, and r,
is the distance for each grid point to the ith radar.
(2) The difference between the retrieved wind field (¥7) and the background winds (V ,):
Jo = Tt By @2 (Ve = Vae)” 2)
This constraint provides auxiliary information in the data void region in the
retrieved domain.

(3) The anelastic continuity equation, expressed as:

R d(pour) , 0(pove) , d(powr) z
J3 = Xi=1Xxy,z 3 T ay t ®)

where po is the air density that varies with height only
(4) The simplified vertical vorticity equation which neglects the mixing and baroclinic

terms, and it is formulated as:
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) is the vertical vorticity and f is the Coriolis parameter. The

where ¢ = (Z—Z
overbar represents a temporal average over the two time levels.
(5) The Laplace smoothing filter, defined as:
Js = X1 By, @s[V2 (ue + v + wp)]? ()
where V2= % + % + % , and the purpose of this penalty term is to minimize the

discrepancy between observation and data-void region. The weighting coefficients

in equations (1) — (5) are given the same values as Liou et al. (2009).
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The cost function of WISSDOM includes basic constraints for wind retrieval: a
geometric relation to connect radial component and three dimensional winds, an
anelastic continuity equation, and the Laplacian smoothing term in space. In addition,
extra constraints are applied in the algorithm: 1) a background term to cover the data-
void region; 2) a vertical vorticity equation in the cost function to guarantee the balance
of the vorticity budget. As mentioned in Liou et al. (2009), this constraint can both
improve the accuracy of the wind and thermodynamic retrievals. With these formulas
as weak constraints, WISSDOM is able to retrieve the wind field along the radar
baseline. By implementing the Immersed Boundary Method (IBM, Tseng and Ferziger
2003), Liou et al (2012) improved the WISSDOM so the retrieval algorithm can take

into account the terrain effect.

2.2 Terrain-Permitting Thermodynamic Retrieval Scheme (TPTRS)
The terrain-permitting thermodynamic retrieval scheme (TPTRS, Liou et al., 2019)
is an algorithm for immediately retrieving the 3D pressure and temperature fields for
complex terrain using wind information. In the algorithm, three basic equations of
motion employ momentum equations to obtain thermodynamic fields (Liou et al. 2003),

including moisture-related contributions:

1 [ou > — _aﬂ:,. =
H—WE+V-|7u—fv+turb(u)]— P F (6)
1 [ov | = o' _

™ [_61: +V-Vu-fv+ turb(v)] =—5 = -G (7)
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In the equation, the subscript 0 on the right represents the basic state, and a prime
represents the disturbance of the basic state. f is the Coriolis parameter; g is the
gravitational acceleration; ¢, is rain mixing ratio, which can be estimated by radar
reflectivity. In the formula, ggq, represents the buoyancy term. The left formula
represents the wind field of the three components in the space of u, v, and w, which is
known from WISSDOM; where S is the total effect of the temporal variation, diffusion,
and source/sink achieved through microphysical processes (Liou, 2001). The S term is
treated as a retrievable parameter in the study, and no additional parameterizations were
applied.

Furthermore, the contributions of vapor, cloud, and rainwater are included to
estimate the buoyancy force. In the retrieval scheme, a normalized pressure () is

obtained (Exner function), and it is defined as

R

=G, (=) (10)

Pog
where P is the air pressure, Py, is 1000 hPa, R is the air constant, and C,, is the
specific heat capacity at constant pressure. In addition, 6, is the basic state of the
virtual potential temperature; it is the virtual cloud potential temperature, which has
included the contributions of water vapor and rain. Defined as follows:

0,0 = 0o(1 + 0.61q,0) (11)

0. =6"+(0.61q, — q.)0, (12)
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Here, q,( isawater vapor mixing ratio, and q. is a cloud-water mixing ratio. In (12),
q, refers to the rainwater mixing ratio, which can be estimated using the relationship
with radar reflectivity (7 in dBZ, Sun and Crook 1997):

n =43.1+ 17.5log(pq,) (13)

where p is the air density.

2.3 Moisture and temperature adjustment scheme

The moisture adjustment method was based on that of Liou et al. (2014), who
proposed a simple and effective approach for adjusting temperature and moisture fields
through iterative methods. In the process, the water vapor mixing ratio perturbation is
initially set to 0, and then the temperature is converted to temperature T through
equation (12), where the virtual cloud potential temperature is the thermodynamic field
derived from the temperature perturbation field and the cloud-water mixing ratio is
derived from the model. The model is treated as DA and uses the inverted surface

temperature and pressure to calculate the dew-point temperature:

B

Ta = ttacrawsre (19
A= 2533 x10% kPa (15)
B =5417 x 103 K (16)
£ =0.622 (17)

Qwo =9, T wo (18)

When the radar reflectivity exceeds 10 dBZ, this area is regarded as saturated. The value
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of the saturated water vapor mixing ratio on these saturated grid points is calculated,

nd

the water vapor mixing ratio of the basic state is subtracted to obtain a new ¢q’, , a

the result is substituted into formula (12) to obtain a new potential temperature
perturbation field 8'. Subsequently, the difference between the newly obtained water
vapor perturbation and potential temperature perturbation and the original water vapor
perturbation field and potential temperature perturbation field is calculated. If the
difference between the two is less than the threshold, the calculation is stopped and the
water vapor adjustment iterative process is complete, resultinginanew ¢’ and 6'.
The threshold valuesare 5 X 1075 for the temperature fieldand 5 x 1072 for

the water vapor mixing ratio.

2.4 WRF-LETKF Radar Assimilation System (WLRAS)

This study uses the radar assimilation system WRF-LETKF Radar Assimilation
System (WLRAS) built by Tsai et al. (2014), which for the first time aims to improve
quantitative precipitation nowcasting. After that, many papers have successfully used
WLRAS to study the Meiyu system and typhoon system in Taiwan. Shao (2015) applied
this system for the first time, and successfully improved the short-term rainfall forecast
of a real case Meiyu system. Wu (2015) relocated typhoon Morakot into the ensemble
to improve convective-scale quantitative precipitation real-time forecasting, and Zheng
(2017) discussed the impact of multi-scale heavy rainfall Meiyu system on forecasting.

The Local Ensemble Transform Kalman Filter (LETKF) is one representation of
the deterministic EnKF, developed at the University of Maryland (Ott et al. 2004), and

the full method description is first seen in Hunt et al. (2007). Like other EnKF methods,
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LETKEF is derived under the framework of minimum variance unbiased estimation.
LETKF has the common advantages of other EnKF methods: (a) the background error
covariance estimated by the forecast ensemble is flow-dependent, which can better
represent the local error characteristics than the fixed background error covariance used
by 3DVAR; (b) EnKF and 4D VAR have comparable analysis accuracy (Caya et al. 2005;
Yang et al. 2009; Miyoshi et al. 2010), but EnKF does not need to write tangent linear
models and adjoint models, so it is easily to different models. (c) the complete nonlinear
model and nonlinear observation operators can be used to deal with the nonlinear
processes of the atmosphere; (d) the analysis algorithm of EnKF can be easily
parallelized. In addition, EnKF can handle the reliability of ensemble error covariance
through covariance localization techniques (Greybush et al. 2011).

Brief descriptions of LETKEF’s features are provided here, and the details of the
algorithm are available in the studies of Hunt et al. (2007) and Yang et al. (2009).

The final analysis can be obtained as follows: each grid point is independently
operated, which can be expressed as a matrix formula as follows:
(1) Estimate the state variables and their uncertainty by updating the ensemble mean

and perturbations as

X, =X, + X, W (19)

X, =X,W (20)

where X is the ensemble mean of the model variables, X is the ensemble
disturbance of the model variables, and the subscripts a and b are the analysis field

and the background field.
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(2) w and W are the weight coefficients of the mean field and the perturbation field.
Through the localization process, the background field and observation
information within the grid localization radius are selected, and the obtained weight

coefficient formula is as follows:

w =P, YR (y, - ¥p) 1)

]1/2

W =[(K - DP, (22)

Among them, y, is the observation vector, the matrix y, and the column vector
y, are the background ensemble mean and disturbance in the observation space,
respectively, and R is the observation error covariance matrix, which is diagonal
due to the assumption that the observation errors are independent matrix, I is the
identity matrix, K is the number of ensembles.

(3) P, is the analysis error covariance matrix in the ensemble space, which can be

calculated as:

P, = [(K — DI/p + YJR'Y,] ™! (23)

where matrix Y, represents the perturbations in the observation space, R is the
observation error covariance matrix, I is an identity matrix, K is the ensemble size,
and p is a multiplicative covariance inflation factor (Anderson 2001).

(4) The R-localization scheme (Hunt et al. 2007) models the observation error with a
Gaussian function to propagate the information between the observation and
analysis grid point. Figure 2-1 presents a schematic of a horizontal and vertical R-
localization.

(5) To sum up the above, W can keep the observational information in the average
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state of the ensemble, and W has the characteristic of flow-dependent error

structure. Finally, the analysis field of each ensemble member is:

X, =X, + X, =X + X, W+ X, W (24)

The LETKF system is coupled with the WRF model in the present study. The
system was originally developed by Yang et al. (2009) for assimilating conventional
observations, and Tsai et al. (2014) modified this system for radar DA at the convective
scale, renaming it the WRF-LETKEF radar assimilation system (WLRAS). The features

and setup of this system are described as follows:

(1) A mixed localization strategy (Tsai et al. 2014) is used to avoid unrealistic
correlations and assign different error covariance localization radii to
different model variables. In the present study, three horizontal radii of 36
(horizontal wind, U and V), 24 (temperature T, water vapor mixing ratio Qv,
and cloud mixing ratio Qc), and 12 km (vertical velocity W, rain mixing ratio
Qr, snow mixing ratio Qs, and graupel mixing ratio Qg) are used to update
the model variables. The vertical localization radius is 4 km for all the

variables.

(2) A data quality control procedure is used to reject a particular observation if
the innovation (the difference between the observation and background state)

is three times larger than the observation error.

(3) To address the under-dispersive problem, an inflation coefficient p is applied,
and an empirical value of 1.08 is used throughout the assimilation

experiments.
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(4) In contrast to the findings of Tsai et al. (2014), all the observations assimilated
in the WLRAS system are used to update all the model variables without

switching off any cross-variable error correlation.

2.5 Observation data and Operator

This study continues the setting of Tsai et al. (2014) and Shao (2015) using the
WLRAS assimilation system, and further modifies two parts 1) In order to understand
the cross-correlation characteristics between observed variables and model variables,
the observed variables are no longer limited to only update specific model variables.
The observation data can simultaneously update the three-dimensional wind fields (U,
V, W), temperature (T), humidity (Qv) and microphysical variable fields (Qr, Qs, Qg,
Q1. Qc) through the assimilation process. 2) The operator of reflectivity is improved
into a more complex process, including considering rain, graupel, and snow, and
distinguishing the difference between dry snow and wet snow around zero degrees
Celsius.

The observation operator for the reflectivity is the sum of rain, snow, and graupel
under the assumptions of the Marshall-Palmer raindrop size distribution (Marshall and

Palmer 1948) and considering the contribution of ice particles:

Z=Z,+Z+7, (25)

According to Dowell et al. (2011), the rain reflectivity formula is as follows:

7.2x102%%(paq,) 175
Z, =

(26)

TL75%1,.0-75x p, 175
ng, 1s the intercept parameter and p, is the air density. Since the microphysical
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scheme used in this experiment is Goddard Cumulus Ensemble (GCE) models (Tao et

al. 2003) 3-ice scheme, the intercept parameter and the rainwater density are:

Ngr = 8 %X 10% (m™%) (27)
k;
pr =1000 (-£) (28)

In this study, the snow below 0 degrees Celsius is dry snow, and the snow above 0

degrees Celsius is wet snow. The reflectivity formulas are as follows:

K;? 2
K—;Zx(%)xlleozox(paqs)1'75 .
Zs—dry = T175x 155075 x pg 175 , T <0°C (29)
7.2)(1020)( 1.75
Zs—wet — (Pads) T > 0°C (30)

TL75xn55075xpg 175

where K is the permittivity, and similarly the intercept parameter and density of snow
are as follows:

Ngs = 1.6 X 107 (m™*) (31)
kg
ps =100 (= (32)

Similarly, the reflectivity formula (33), intercept parameter (34) and density (35) of hail

are obtained as follows:

2
Pg 20 1.75
0.23X| == |X7.2X10“" X
<Pr2> (Pan)

Zg = L 75%n0g075xpg175 (33)
Ngg =4 % 10° (m™) (34)

k
py = 400 (m—i (35)

Finally, the operators for the reflectivity contributions from rain (36), dry snow (37),

wet snow (38) and graupel (39) are as follows:
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Zy = 3.63 * 10°(pagy)

Zs—dry = 2.79 % 108(Paq5)1'75

Zg_ywer = 1.21 % 1011(paqs)1.75

Zy = 1.12 % 10°(paq,)

20

1.75

1.75
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Chapter 3

Case study: Mei-Yu front on 11 June 2012

3.1 Case review

A mesoscale convective rainfall event accompanied by a frontal system on 11 June
2012 was selected for this study. The weather system resulted in total accumulated
rainfall of more than 400 mm within 10 h, leading to flooding in Northern Taiwan.

According to an analysis of the surface weather map (Fig. 3-1a), the Mei-Yu front
remained north of Taiwan at 1200 UTC on June 11 (2000 LST), and the weather map
at 850 hPa revealed a short-wave trough and abundance of water vapor over the ocean
west of Taiwan (Fig. 3-1b). During this time, a strong and deep southwesterly was
flowing from the surface to the mid-levels in the southern region of the frontal system.
The environmental conditions ahead of the frontal system were highly favorable to the
development of severe weather.

Figure 3-2 illustrates the evolution of the composite reflectivity observed by the
RCWEF radar at 1-h intervals from 1200 to 1600 UTC. At 1200 UTC, a line convection
system with strong reflectivity (>40 dBZ) approached Northern Taiwan. After the
system landed over Taiwan, a convective cell with a line shape was triggered along and
parallel to the northwest coast and then merged with the main precipitation system. This
feature was repeated twice between 1400 and 1600 UTC while the main precipitating
system remained quasi-stationary.

This event was poorly predicted by the Central Weather Bureau of Taiwan because

a 5-km resolution numerical weather prediction model failed to accurately capture the

21



precipitation system that had become stationary over Northern Taiwan. Wang et al.
(2016) studied this event with a higher resolution (1.5-km) numerical simulation to
analyze its dynamics and thermodynamics. Despite their strategy of nesting and
downscaling, they realized that improving the initial conditions for a very short-term
QPF at the cloud resolving scale was crucial. By using radiosondes, surface
observations, and reanalysis data, Chen et al. (2018) demonstrated that high moisture
content and the existence of a barrier jet accompanying a frontal system caused long-
lived convection cells over Taiwan’s northwestern coast. Using a retrieval algorithm to
obtain wind, pressure, and temperature data in three dimensions, Ke et al. (2019)
examined the evolution of severe weather phenomena by using multiple Doppler radar
observations. These studies highlight the role of multiscale features (such as the
location of the frontal system, strength of the barrier jet, and cold pool) and orographic

interactions in the formation of the front over Northern Taiwan.

3.2 Evolution of Reflectivity

The evolution of the precipitation system is illustrated by radar observations.
Figure 3-2 shows the composite reflectivity of the RCWF radar at 30-minute intervals
from 1200 UTC to 1600 UTC. At 1200 and 1230 UTC, a main convection centre C1
(defined as reflectivity > 40 dBZ and length > 150 km) approached northern Taiwan.
During this time interval, a line convection S1 (length of approximately 50 km),
oriented in an east-west direction, occurred along the southwest part of the main
precipitation system and continued to develop (Fig. 3-2a, b). When the system moved

toward Taiwan, the main convection C1 weakened at 1300 and 1330 UTC according to
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the reflectivity (Fig. 3-2¢c, d). C1 continued to move southeast towards northern Taiwan
and eventually merged with S1. The convention center C2 was formed at 1400 UTC
(Fig. 3-2e), strengthening the main convection. Based on the leading edge of the strong
reflectivity (>40 dBZ), we determined that the precipitation system landed over
northern Taiwan at 1400 UTC. After landing, a line convection S2 (Fig. 3-2f) was
triggered again at the south western part of the main precipitation system parallel to the
orography. S2 merged with C2 at 1500 UTC, yielding C3 (Fig. 3-2g). A new line
convection, S3, resembling S2 (Fig. 3-2h) formed at 1530 UTC; subsequently it merged
with the main convection, yielding C4 (Fig. 3-21i).

Parker and Johnson (2000) categorized linear convection of the MCS into three
different types based on the environmental flow, speed of translation, and the
reflectivity pattern of the precipitation system: trailing stratiform (TS), leading
stratiform (LS) and parallel stratiform (PS). According to their categorization, the
precipitation system changed from TS (1200-1230 UTC; Figs. 3-2a, b) to PS (1430-
1600 UTC; Figs. 3-2f — 1). By plotting contours of reflectivity values greater than 40
dBZ, the echo of the Y-shaped structure at 1430 and 1530 UTC is clearly demonstrated
(Fig. 3-2j). This repeated Y-shaped echo structure is not uncommon in northern Taiwan.
Previously, Wang et al. (1991) examined this structure by using a Velocity Azimuthal
Display (VAD) algorithm. Deng et al. (1992) further analysed the synoptic environment
when the Y-shaped echo structure occurred. However, their studies focused on the
synoptic-scale conditions and strong mesoscale convection when the precipitation
system remained over the ocean.

According to the system translation speed (estimated by the strong line echo, Z >
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40dBZ, of the radar observation) and the pattern of the rainband, we divide the lifecycle
of the precipitation system into three different stages (Table 3-1). The first 30-min
(1200-1230 UTC) is stage one. During this time, the system moved rapidly (15 km hr-
1) from the southern China to the northern Taiwan. Between 1300 UTC and 1400 UTC,
the system underwent a transitional period: the line convection S1 merged with C1 (see
Fig. 3-2), and the united convection C2 landed in northern Taiwan. This is defined as
the second stage. During the third stage (after 1430 UTC), the line convection S2 and
S3 with Y-shaped echo formed and merged with the main convection, and the
displacement of the system became quasi-stationary.

It should be noted that these synoptic-scale features are commonly seen during the
Mei-Yu season in Taiwan. However, how to form a quasi-stationary precipitation
system with repeated Y-shaped echoes is not fully known. In the next section, the
structure of the precipitation system and its evolution in time are investigated using a

retrieval technique.

3.3 Result of retrieval by WISSDOM and TPTRS at 1400 UTC

The retrievals show transition features when the precipitation system landed over
Taiwan. Before the line convection S1 merges with the main convection C1 (Fig. 3-2d,
e), the low-level convergence (at 1-km height) and vertical velocity (at 5-km height) at
1330 UTC reveal that the convection C1 was weakening (not shown). After merging,
the intensity of the convergence field and updraft motion at 1400 UTC (Fig. 3-3a) is
maintained similarly to the first stage.

On the other hand, Fig. 3-b shows the region of the barrier jet (isotach > 15 m s™)
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was wider and stronger than the result at 1200 UTC. In the transition period, the cross-

section (see Fig. 3-3a, line 2-2”) of the reflectivity shows that a new convection (~121°E)
developed in the south-west of the main precipitation system. The isotach in Fig. 3-2¢

illustrates that an intense wind (southwesterly) exists between 2 and 5 km on the

southwest side of the strong reflectivity. The retrieved vertical motion in Fig. 3-2d

shows a tilted structure (southwest to northeast), and the updraft is much stronger than

the downdraft.

The pressure perturbations at 2-km height at 1400 UTC are shown in Fig. 3-3e. A
meso-low center (L1) is distributed over the retrieved domain at 1400 UTC. The low
of L1 is caused and followed by the precipitation system. In the meantime, a relative
weak low, L2, is located inland of northern Taiwan. The intensity of the low pressure
(L2) 1s weaker before convection S1 united with C1, and it is strengthened (Fig. 3-3¢)
after the two systems merged over northern Taiwan. The pressure gradient force due to
L2 over land would accelerate area I and decelerate area II of the southwesterly wind
(Fig. 3-3e). The forcing in area I is superimposed over the original barrier jet and this
could explain the enhancement and extension of the barrier jet at 1400 UTC (Fig. 3-
3b).

The temperature fields (Fig. 3-3f) at 2-km height illustrate that the warm region
stays in the southwest of the retrieval domain. From the sounding data for Makung and
Bangqiao stations, the wind shear below 700 hPa indicates warm advection, as in Li et
al. (1997). Therefore, it is expected that the enhanced barrier jet would advect more
humid and warm air from the south of the ocean and that the positive temperature

perturbation would be larger at 1400 UTC (Fig. 3-3f). The convection S2 with Y-shaped
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echo was triggered in this warmer area because the outflow of the cold pool near the
surface encountered the barrier jet (dashed line in Fig. 3-3f). Moreover, the time series
of the temperature field (Fig. 3-3f) shows the cold region evolved from the northwest
to the northeast of the domain when the precipitation system approached and landed

over northern Taiwan.

3.4 Evolution of Enhanced Barrier jet

The mechanism of the evolved barrier jet is further investigated with the vertical
vorticity signature and vertical vorticity budget (tendency, tilting and stretching). Since
the horizontal wind are retrieved with at least two radars at each time, and the errors of
the retrieved horizontal wind are very small (Liou et al. 2009, see their table 1), it is

able to analyse the vertical vorticity quantitatively. The horizontal pattern of 1 km

. .. )
vertical vorticity ({ = é

— Z—;) at 1400 UTC (Fig. 3-4a) shows that positive (negative)
¢ distributed left (right) wing of the barrier jet (blue vector J; in Fig. 3-4a). When
computing the different terms of the vorticity budget, a positive (negative) vorticity
tendency occurs at the right (left) wing of the barrier jet, implying displacement of the
barrier jet. In addition, further examination confirms that stretching and tilting
dominates the positive vorticity tendency at 1400 UTC (Fig. 3-4b). This feature
matches the intense convection and the location of upward motion retrieved by
WISSDOM in Fig. 11a. The evolution of the vorticity at the right wing of the barrier
jet (J1) in Fig. 3-4a can be estimated as follows: the vertical vorticity is about -8%10* s°

! and the vorticity tendency in vertical direction is up to 0.5%10° s. Assuming the

vorticity tendency is constant, the vertical vorticity at the right wing of J; would

26



increase to 2.7%103 s over 1.5-hr. The increment (2.7%107) due to the tendency
exceeds the original negative vorticity; hence, the vorticity at the right wing of the
barrier jet (J1) would become positive. The vorticity tendency thus moves the barrier
jet inland (east) at 1530 UTC as shown in Fig. 3-4c. The schematic diagram in Fig. 3-
4d illustrates the migration and strengthening of the barrier jet. The vertical wind shear
shows a horizontal vortex. When the strong convection landed, the barrier jet enhanced
by the intense pressure gradient force (from southwest to northeast, Fig. 3-3¢) and
moved inland by the positive vertical vorticity tendency from tilting and stretching via

convective updrafts (blue vector in Fig. 3-4d).

3.5 Schematic diagrams of the extremely heavy rainfall event
Based on this study, the schematic diagram in Fig. 3.5 illustrates the mechanism
behind the formation of TS and PS precipitation over northern Taiwan in this case:

(1) As shown in Fig. 3-5a, the Mei-Yu front is accompanied by a MCS (prefrontal
precipitation) located over the ocean to the north of Taiwan. At the same time,
Taiwan is surrounded by southwesterly flow and the barrier jet already exists along
the coast due to orographic effect over Taiwan. The cold outflow of the main
precipitation system encounters a warm and humid prevailing wind (southwesterly
flow), and then triggers a line convection over the ocean.

(2) When the main precipitation moves southeast and approaches Taiwan, the line
convection is pushed by the southwesterly flow and merges with the main
precipitation system. In addition, strong convection occurs near the location of the

barrier jet, and it strengthens the pressure gradient force (PGF) at low levels. The
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PGF is co-located with the barrier jet in the same direction; therefore, the barrier jet
is enhanced after the system lands over Taiwan. The upward motion of the strong
convection tilts and stretches the horizontal vortex. This mechanism further causes
the barrier jet to move east towards the mountain area.

(3) Since the Mei-yu front moves slowly after strong convection occurs inland, a PS-
type precipitation is formed (Fig. 3-5b). The strong convection was blocked by
orography and thus maintained in the north of Taiwan. In the meantime, the
stratiform area produces a wide cold region over north of Taiwan, and the cold
outflow encounters the barrier jet and triggers a new line convection. Because the
outflow is partially blocked by the orography, the line convection is oriented from
southwest to northeast. The main precipitation and new convection then display a Y-
shaped echo structure.

(4) The line convection is pushed towards and united with the main precipitation
system by the enhanced barrier jet. This feature of the Y-shaped convection can
repeat several times when the barrier jet and cold outflow coexist in the right
locations. Overall, the locations of the cold pool, barrier jet, orography and the quasi-
stationary Mei-Yu front over northern Taiwan form a mechanism to maintain the
intensity of the convection and render the precipitation system quasi-stationary.
Extremely heavy rainfall can thus occur for an extended period of time in the same
area. Once the front moved further south, the outflow due to precipitation no longer
coupled well with the barrier jet and this mechanism could not be maintained.

The case was selected from 11 June, 2012, which was affected by the

southwesterly air flow and the Meiyu front, resulting in the extreme heavy rainfall in
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the northern part as the research and analysis. The rainfall forecast for a frontal case
often depends on the position and speed of the front. In this case, the numerical model
forecast of the Central Weather Bureau at that time did not capture the extreme rainfall
equivalent to the actual rainfall. There are still many unknown factors in the system.
We first understand the environmental characteristics and dynamic structure
characteristics of extreme rainfall cases, and further improve the forecast deviation of
the model itself through the assimilation of convective-scale radar data, and improve

short-term quantitative rainfall forecasting.

29



Chapter 4

Experiments Design and Validation scores

4.1 Experiments design
(a) OSSE experimental design with WRF

The WRF model (Powers et al. 2017; Skamarock et al. 2008) was used to conduct
a series of OSSEs. Two-way nesting was configured using a three-layer nested domain.
The horizontal resolution was 27 (DO1), 9 (D02), and 3 km (D03) with 251 x 261, 337
x 271, and 223 x 232 grid points, respectively (Fig. 4-1). The vertical model contained
51 levels, with the level top at 10 hPa. The parameterization schemes of the model were
as follows: the rapid radiative transfer model for the physical parameterization of long-
wave radiation (Mlawer et al. 1997); the Dudhia method for short-wave radiation
(Dudhia 1989); and the Yonsei University scheme for boundary layer parameterization
(Hong et al. 2006). In DO1 and D02, the Grell-Dévényi ensemble scheme (Grell and
Dévényi 2002) was used for cumulus parameterization; the microphysical GCE scheme
was applied in all domains. The 40 members of the ensemble were generated from the
WRF-3DVar random perturbations (Barker et al. 2004) in DO1 and nested down to 9-
km and 3-km resolutions. In this study, all the data were assimilated in the innermost
domain (D03), and the changes were propagated through upscaling.

To mimic the actual uncertainty inherent of front position error in this event, two
sets of initial conditions were used to differentiate the experiments from the nature run
(truth, Exp. 1, Table 4-1) and the control run (NoDA, Exp. 2). The 1° x 1° final

operational global analysis (FNL) from the National Centers for Environmental

30



Prediction (NCEP) for 0000 UTC on 11 June 2012 was applied to all the experimental
tests. ERA-interim reanalysis data of a higher resolution (0.75° x 0.75°) were used to
initialize the model as the nature run. Figure 4-2 presents the two initial conditions for
the nature run (truth, Figs. 4-2a, ¢) and control run (NoDA, Figs. 4-2b, d). The synoptic
features (Figs. 4-2a, b) of the southwestern wind, potential height, and potential
temperature near Taiwan were similar in the two reanalysis fields at 850 hPa. However,
the water vapor mixing ratio of the ERA-interim reanalysis (Fig. 4-2¢) was slightly
larger than that of the NCEP FNL (Fig. 4-2d) in the Taiwan area. According to the
observations at 1400 UTC (Fig. 3-3¢), the rainband of the nature run (Fig. 4-3a) had
already landed in Northern Taiwan, whereas the rainband of the control run initialized
by NCEP (Fig. 4-3b) was still over the ocean. Furthermore, in terms of the QPF
performance (not shown), the forecast initialized by NCEP did not predict heavy
rainfall over Northern Taiwan, whereas the simulation initialized by the ERA-interim
reanalysis was able to closely reproduce the location and total accumulated rainfall of

the surface observations in Northern Taiwan.

(b) Synthetic radar data and thermodynamic variables

To clearly examine the benefit and added value of providing 3D thermodynamic
information at the convective scale, we assume that the temperature and humidity
observations are obtained from the area of precipitation in the experiments. Therefore,
the observation operator in these experiments is the mapping of the true state of
temperature and water vapor mixing ratio on the model grid to the observation spaces.

The simulated observations were generated from the nature (truth) run. In addition,
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considering the uncertainty of the observations, true states were perturbed randomly
according to the prescribed observation errors: 5 dBZ for reflectivity (Z) and 3 m s
for radial wind (Vr) as in Tsai et al. (2014), and 0.8 K for temperature and 0.8 g kg™
for the water vapor mixing ratio. Radar observation data (reflectivity and radial velocity)
of two radars in Northern Taiwan were obtained up to a range of 230 km (180 km) from
the RCWF (NCU-CPOL) site every 15 minutes by a radar scan strategy as Volume
Coverage Pattern (VCP) 221 with nine plan position indicator (PPI) elevations between
0.5° and 19.5°. The superobbing method (Alpert and Kumar 2007; Lindskog et al. 2004)
was applied to reduce the simulated observation count in this study. The data points

were collected every 4 km in the radial direction and every 4° in the azimuthal direction

in the PPI (Fig. 4-4) and then averaged through inverse distance weighting.

(c) Thermodynamic variables retrieved via TPTRS

By taking 3D wind fields from two consecutive (15-min interval) of the true state,
the 3D thermodynamic variables (T and Qv) inside the precipitation system were
obtained using TPTRS. Figure 4-5 shows that horizontal temperature perturbation at
1400UTC is mainly divided into two blocks, the cold area on the northwest side of the
rainfall system and the warm area on the southeast side. At a height of 0.5 km (Figs. 4-
Sa, b), it can be seen that the retrieved results of the northern cold region of the rainfall
system are close to truth, while the retrieval of the warm region shows a warmer
situation. At an altitude of 1.0 km (Figs. 4-5c¢, d), the difference between the retrieval
and the truth is less obvious. The difference between the retrieval and the truth mainly

exists in the lowest level, which is speculated to be due to the deviation of the lower
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level affected by the boundary layer. On the other hand, there is no obvious rainfall
system on the southeast side, the deviation of the retrieval system TPTRS in the system
less environment is more obvious. A cross-section y-z plane of retrieval temperature
perturbation shows warmer in the convection area and cold area than truth in vertical
structure.

The vertical structure of the retrieved temperature data (Fig. 4-6a) indicated that
the mesoscale warm sector in the convection area and low-level cold pool area was well
demonstrated, similar to that in the truth state (Fig. 4-5). The horizontal structure of the
retrieved water vapor data at a height of 1.5 km (Fig.4-6) indicated that the wet area in
front of the rainband and dry area behind the frontal system were well illustrated. The
results of the temperature revealed that the root mean square error (RMSE) in the
temperature was less than 0.5 K, and the bias was positive, meaning that the retrieved
temperature was slightly warmer than that in the truth state (Fig. 4-6¢). The retrieved
water vapor results indicated that the overall performance was slightly wetter than truth
model, with a correlation of 0.99 and error of 0.56 g kg™ ! (Fig. 4-6d). In general, the
retrievals obtain a good quality of temperature and humidity fields with slightly bias.
Therefore, this set of the experiments assumes that the basic state of the temperature
and water vapor is error-free and the source of the error is from the perturbations of
thermodynamic variables. The observation errors of the retrieved temperature and
water vapor were set at 0.8 K and 0.8 g kg™, respectively (slightly larger than the root
mean square error). This setup accords with other studies of thermodynamic retrieval

(Foerster and Bell 2017, Liou et al 2003, Liou et al. 2019, Feng et al. 2019).
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(d) Experiments setup

The assimilation experiments in this study were conducted in three sets (Table 4-
1). In the first set, radar observation data were assimilated for 1 h (Exp. Z assimilated
reflectivity only; Exp. Vr assimilated radial wind only; and Exp. ZVr assimilated both
radar reflectivity and radial velocity), and then the assimilation period was extended to
2 h (Exp. ZVr2h assimilated both radar reflectivity and radial velocity). In the second
set, the thermodynamic field temperature and water vapor generated from the nature
run were additionally assimilated (Exp. ZVrT assimilated reflectivity, radial velocity,
and temperature; Exp. ZVrQv assimilated radar observations and the humidity field;
Exp. ZVrTQv assimilated radar observations and both the temperature and humidity
fields; Exp. ZVrTQv2h is an experiment extended assimilation period to 2h from Exp.
ZVrTQv). Without any bias, the first and second sets of experiments can investigate the
added value of assimilating 3D thermodynamic fields in the severe weather system. In
the final set, to mimic bias could be existed in observations retrieved from remote
sensing, a retrieved 3D temperature and water vapor information with warm and wet
bias from section 3.2 (c) is assimilated (Exp. ZVrTR, Exp. ZVrQvR, and Exp.
ZVTTQVR).

The flowcharts for all the experiments are presented in Fig. 4-7. The initial
conditions derived from the ERA-interim and NCEP analyses were launched at 0000
UTC on 11 June 2012 and then integrated. The cycled DA started at 1300 (1200) UTC,
assimilating observations every 15 min for a 1-h (2-h) assimilation period. Once the
final analysis was obtained at 1400 UTC, a 3-h deterministic forecast was initialized

using the ensemble mean to examine the QPF performance.
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4.2 Validation scores
(a) Ensemble spread (SPD) and Root mean square error (RMSE)

The ensemble spread (SPD) are used to estimate the difference in ensemble that is
a statistic of the difference between ensemble members and the ensemble mean (x), N

is total members:
1 _q1/2

SPD = [ 3N, (x" — %)?| (40)
to examine uncertainty of model simulations. When the ensemble spread is small, it
means that the model is underdispersive that may limit the effectiveness of assimilating
observations in an EnKF. The assimilation results will be biased towards the model
without observation data. Conversely, if the ensemble spread is over dispersive, it will
cause the mode to fail to converge.

Whereas Root mean square error (RMSE) is the forecast error difference between

the ensemble members and the truth (x;):

1/2
RMSE = [N, (x" — x,)?] 1)

1
N-—
In the study, we could have RMSE to validate how impacts of analysis and forecast to

close as truth run in OSSEs.

(b) Error Correlation Coefficient (Coor)

The error correlation coefficient is defined by the following equation:

1

2k—1( xyzk k)x( Imnk l k)
- E K—1&k= Axyzk—Axyz bimnk—bimn
001 (axyz: lmn)

p— (42)

K is total number of ensemble members. To calculate ensemble mean of variable a at

location (X, y, z) as a reference point. If variable a is variable b, the Coor is called auto-
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correlation. On the other hand, it is called cross-correlation. In the study, we calculated

auto-correlation that the value of Coor is 1 at the reference point.

(c) The relative Spatial Correlation Coefficient (RSCC)

The spatial correlation coefficient (SCC) is defined by the following equation:

N — [
)2\ ((xexp _xexp)(xtruth _xtruth))

SCC = T (43)

N —\2 N —_— 2
[21 (xexp _xexp) D) (xtruth_xtruth)z]

where x refers to the hydrometeor variables (Qr, Qs, or Qg) and exp is an experiment.

We define relative SCC (RSCC) by the following equation:

SCCexp—SCCzyr
SCCzyr

RSSC = x 100% (44)

If RSCC is positive, the experiment has positive improvement compared with Exp. ZVr.

(d) Fractions Skill Score (FSS)
The Fractions Skill Score (FSS, Roberts and Lean 2008) is a spatial neighborhood

technique, defined by the following equation:

l(Pfcst_Pobs)2
N

FSS=1-
%(ZN(Pfcst)z‘FZN(Pobs)z)

(47)

where N is the number of total observation points and P is the probability of
achieving a value over a threshold around a grid point. In this study, rainfall
accumulation to be verified was 0.01-70 mm, and the range distance was 24 km. If F'SS
1s 1, the forecast is accurate. An F'SS of zero indicates no skill scores were obtained for

the rainfall accumulation forecast.
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Chapter 5

Result of OSSE and retrieval variables assimilation

5.1 Ensemble background error analysis

Ensemble-based data assimilation uses short-term ensemble forecasts to estimate
flow-dependent background error covariance which represents the statistics of forecast
error is very important to decide the weighting of observation and spread out the
observation information to the vicinity of model grid points.

Before entering the ensemble data assimilation, the characteristics between the
ensembles are understood through the ensemble dispersion at 1300 UTC, as shown in
Figure 5-1. In the vicinity of the front reflectivity, the reflectivity SPD (Fig. 5-1a) shows
dispersion over 25 dBZ at height 2500-m. The spread of potential temperature (Fig. 5-
1b) and water vapor mixing ratio (Fig. 5-1c) are about 0.6 K and 0.6 gkg™!, respectively.
The SPD of the Qr (rain water) field is relatively scattered, which is close to the rainfall
area. The value of the horizontal wind field SPD is about 4 m s™', and more obvious
near the rainfall area what we are concerned about. From the SPD analysis, it can be
determined that the observation error value of the assimilation system set in this
experiment is similar to the model background error. It is not biased towards the model
or the observation, and the assimilation weight is coordinated by the flow-independent
between the model and the observation.

Figure 5-2 shows the horizontal distribution of spatial correlation calculated from
the variables obtained from the ensemble at 1300 UTC on 2500-m. Autocorrelation is

the variable at the single point position in space, and calculate the correlation
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distribution with the surrounding space (Fig. 5-2a, b, and c). The radius of the range
where the correlation is over 0.7 shows about 40 km in U-wind (Fig. 5-2a) and V-wind
(Fig. 5-2b). The range of the autocorrelation is depended on wind direction that U-wind
is wider at zonal direction and V-wind is long range at meridional direction. The
autocorrelation of water vapor presents a sector-shaped toward southwesterly region
(Fig. 5-2c¢). The area of the temperature correlation 0.7 is around 10-km (Fig. 5-2d). It
means we need more dense temperature data to improve data assimilation for the
limited correlation area. However, the structure of autocorrelation is not purely
homogeneous isotropic background error correlations but it presents situation-
dependent correlations in convective-scale system. It can be seen that the spatial
distribution of independent variable correlations in meso- and small-scale systems is
not a homogenous distribution, and the performance error structure is affected by the

environment, system and terrain.

5.2 Performance of the cycling process

The RMSE of reflectivity, radial velocity, temperature and water vapor for Exps.
3-9 were presented in Fig. 5-3 during the assimilation period. The reflectivity error was
similar for all the experiments (Fig. 5-3a), except the Exp. Vr. because reflectivity data
was not assimilated in this experiment. In only radar assimilation experiments, Exp.
ZVr2h shows lower error than other experiments of only assimilation for 1-h (Z, Vr,
ZVr). In addition, the experiments of assimilating additional thermodynamic variables
presents the best result is the longer assimilation with both T and Qv (Exp. ZVrTQv2h,

purple dashed line). On the other hand, the RMSE of radial velocity (Fig. 5-3b) revealed
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that the error of Exp. Z was much larger than the other experiments when radial wind
information is not assimilated.

The RMSE of temperature and water vapor were presented in Fig. 5-3c and Fig.
5-3d, respectively. When assimilating 3D temperature in Exps. ZVrT, ZVrTQv and
ZVrTQv2h, the error of temperature decreased rapidly in the early assimilating period
compared to other experiments. In addition, Exp. ZVrQv gradually improved the error
of temperature during cycling process and had similar error at the final analysis as Exps.
ZVrT, ZVrTQv and ZVrTQv2h. This indicated that via background error covariance in
the analysis steps, assimilating water vapor information could improve temperature
field. On the other hand, experiments of assimilating radial wind and/or reflectivity
(solid lines in Fig. 5-3c) had larger error in the final analysis. Result of Exp. ZVr2h
(black dashed line) shows that the error of temperature could not further improve by
assimilating radial wind and reflectivity in a longer assimilation period. When
examining the RMSE of water vapor, experiments of assimilating radial wind and/or
reflectivity (solid lines in Fig. 5-3d) had similar result. Smaller error of water vapor was
illustrated when water vapor information was assimilated (green and blue dashed lines
in Fig. 5-3d). Assimilating 3D temperature (Exp. ZVrT, red dashed line) could not have
similar error of water vapor compared to Exps. ZVrQv and ZVrTQv. Results of Fig 5-
3¢ (blue dashed line) and 5-3d (red dashed line) indicated that assimilating 3D water
vapor information was more crucial and effective than assimilating temperature field to

obtain optimal analysis.
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5.3 Analysis and Short-term forecast of OSSEs
(a) Performance of Final Analysis

Figure 5-4 depicts the convergence field at a height of 1-km (1400 UTC). A strong
convergence area was located northwest of Taiwan in the truth state (Fig. 5-4a).
However, the convergence field was unclear in NoDA (Fig. 5-4b), indicating a forecast
position error. When radar data (radial wind and/or reflectivity) were assimilated in
Exps. Z, Vr, ZVr, and ZVr2h, the convergence field demonstrated that the position error
had been largely corrected, triggering convection in the appropriate place (Figs. 5-4c—
f). In addition, in terms of the intensity of the convergence field (Figs. 5-4c, d, and ¢),
assimilating both radial wind and reflectivity in Exp. ZVr produced a stronger
convergence than that in Exp. Z and Exp. Vr. The strength of the convergence field in
Exp. ZVr2h (Fig. 5-4f) was the most intense, similar to that in the truth state (Fig. 5-
4a). Thus, to obtain the optimal analysis in a multiscale weather system such as a frontal
system, increasing the assimilation period is beneficial. However, when assimilating
additional information, such as temperature and/or water vapor, for the 1-h assimilation
in Exps. ZVrT, ZVrQv, and ZVrTQv (Figs. 5-4g, h, and 1), the results revealed that a
comparable intensity of the convergence was achieved near the northwest coast (truth,
Fig. 5-4a). For 2-h assimilation, ZVrTQv2h (Fig. 5-4j) shows the convergence range
are similar as true (Fig. 5-4a) than ZVr2h (Fig. 5-4f) with additional thermodynamic
variables information.

The reflectivity at a height of 2.5 km in the final analysis (1400 UTC) for all
experiments is illustrated in Fig. 5-5. The assimilation of 1-h radial wind and/or

reflectivity data (Figs. 5-5c—e) resulted in the correction of the strong convection
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(reflectivity > 40 dBZ) along the coast of northwestern Taiwan. In addition, assimilating
both reflectivity and radial wind (Fig. 5-5e) provided a superior rainband structure
compared with only assimilating Z (Fig. 5-5¢) or Vr (Fig. 5-5d). When Z and Vr were
both assimilated for 2 h, as indicated in Fig. 5-5f, the rainband structure was even more
similar to that of the nature run (Fig. 5-5a). Thus, longer assimilation lengths for Z and
Vr further improved the analysis of the precipitation system. On the other hand, when
additional information related to the thermodynamics field was assimilated, the
rainband position error and precipitation intensity error were minimized (Figs. 5-3g, h,
and 1), demonstrating a similar performance to that in Exp. ZVr2h (Fig. 11d). Notably,
the result of Exp. ZVrT (Fig. 5-5g) captured the strong convective rainband because of
the assimilation of radial wind and reflectivity in 1 h with the addition of temperature.
The horizontal reflectivity fields with assimilating additional water vapor show the
strong convective line-shaped rainband similar as the result of Exp. ZVrT (Fig. 5-5g).
The overestimated reflectivity was also reduced near the north-west area (Exp. ZVrQyv,
Fig. 5-51 and Exp. ZVrTQv, Fig. 5-5j). The results indicate that providing
thermodynamic information shortened the cycling process and assisted in improving
the analysis of the strong convective rainband (Figs. 5-5g, h, and 1). Moreover, the
rainband structure of Exp. ZVrTQv2h is closer to the truth than other experiments.
Figure 5-6 provides a cross section of reflectivity at 1400 UTC in the vertical
structure (15 km x 333 km, see the solid line in Fig. 4-3a) across the rainband between
120.75°E-25.93°N and 121.50°E-23.00°N. In the truth state, the reflectivity in Fig. 5-
6a clearly demonstrates the structure of the rainband, revealing both a strong convective

(Z > 40dBZ at X = 110-150 km) and stratiform (X = 0—110 km) region. Figure 5-6b
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depicts the spurious convection (X = 0—10 km) caused by the initial position error from
the NoDA. By assimilating reflectivity only (Exp. Z, Fig. 5-6¢), the structure of the
rainband can be modified to the right location but intensity of Z >40 dBZ in strong
convection (X ~111 km) is not as high as the truth. Figure 5-6d reveals the weak
convection due to assimilating radial velocity without reflectivity in Exp. Vr. When Z
and Vr were both assimilated, the rainband shifted to the correct position (Exp. ZVr,
Fig. 5-6¢e, and Exp. ZVr2h, Fig. 5-6f), and in particular, the area of strong convection
was accurately captured. However, because of the initial position error in the
background state, relatively strong precipitation (Z = 25-35 dBZ at X = 0-10 km)
behind the main precipitation system could not be removed properly, even for the longer
assimilation window in Exp. ZVr2h (Fig. 5-6f). The additional temperature and/or
humidity information (Figs. 5-6g, h, and 1) was able to reduce these incorrect areas of
precipitation. In the strong convective area, reflectivity values were above 45 dBZ and
close to the truth state when additional thermodynamic variables were assimilated
(ZV1T, ZVrQV, and ZVrTQv, Figs. 5-6g, h, and 1). The last experiment of ZVrTQv2h
(Fig. 5-6j) shows the strong reflectivity values at convective area more similar as truth
than ZVr2h (Fig. 5-6f).

We further investigated the cross sections of the vertical velocity and temperature
fields, revealing the impact of assimilating thermodynamic variables. Figure 5-7a
presents the results of the truth run as a reference. The maximum updraft of the vertical
velocity (shaded) was observed near a height of 6 km in the convective area; relative
weak vertical velocity was noted in the stratiform area. The temperature perturbation

(contours) indicated a warm core (solid lines) at the upper layer in the convection area

4



and a cold pool (dashed lines) at a low level of 3 km in the stratiform area. In the NoDA,
no updraft or cold pool signature was observed (Fig. 5-7b). The assimilation of
reflectivity alone in Exp. Z (Fig. 5-7¢) sort of reconstructed the upward motions and
warm core of the convection, but the results were weaker than those of the truth. At a
low level, the negative temperature perturbation revealed that the cold pool was weaker
and thinner than that in the truth. According to the stable and stratified features (warm
above and cold below, refer to Fig. 5-7a) in the stratiform region, assimilating both
reflectivity and radial velocity for 1 h (ZVr, Fig. 5-7¢) and 2 h (ZVr2h, Fig. 5-7f) did
not suitably modify the vertical temperature structure. Assimilating the thermodynamic
information (ZVrT, ZVrQv, ZVrTQv, and ZVrTQv2h, Figs. 5-7g, h, i, and j), by contrast,
strengthened the intensity of the vertical velocity (with an upward motion of up to 9 m
s 1) and temperature (with positive perturbations of up to 3 K) more effectively than
extending the assimilation period (Exp. ZVr2h, Fig. 5-7f). When temperature and/or
humidity information (Figs. 5-7g, h, 1, and j) was assimilated, the stratiform region
could be entirely reconstructed. To explain this result, single observation tests of
temperature and horizontal wind are applied in the stratiform area (not shown). The
results illustrated that assimilating the temperature field alone propagated the
information and adjusted the stratiform area more effectively than solely assimilating
the horizontal winds.

In the study, WLRAS allows all variables updated by all simulated observation.
Hydrometers are important to affect the reflectivity structure and short-term forecast at
the final analysis. Figure 5-8 presents vertical structure of hydrometers of rain, graupel

and snow mixing ratio. Examining the vertical structure of the microphysical variables,
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Fig. 5-8a shows the mixting ratio of rain (Qr), snow (Qs), and graupel (Qg) and the 0-
degree temperature (black line) for Truth. The hydrometers structures of NoDA (Fig.
5-8b) and Exp. Vr (Fig. 5-8d) are not ideal compared to other experiments. There are
obvious maximum values of Qr, and Qg in convective area, and Qs in stratifrom upper
than 0-degree line. The microphysical variables Qr, and Qg show well structure in
convective area but Qs have not been completely corrected in stratiform area in Exp. Z
(Fig. 5-8c), Exp. ZVr (Fig. 5-8e), and Exp. ZVr2h (Fig. 5-8f) even after assimilating
radar data. However, Exp. ZVrT (Fig. 5-8g), Exp. ZVrQv (Fig. 5-8h), and Exp. ZVrTQv
(Fig. 5-81) present well Qg and Qr at corrective area. In stratiform, the structure of Qs
shows wider similar as truth by assimilating additional thermodynamic variables.
Hydrometers of Qr, Qs, and Qg are overestimated than truth from Exp. ZVrTQv2h (Fig.
5-8j)).

Figure 5-9 is RSCC that presents improvement of each experiment (Exps. ZVr2h,
ZVrT, ZVrQv, ZViTQv and ZVrTQv2h) for the reflectivity-related hydrometeor
variables (mixing ratio of rain, graupel, and snow) compared with Exp. ZVr in which
Vr and Z were assimilated. The results revealed that all the hydrometeor variables are
improved by approximately 10% when the assimilation period was extended.
Assimilating temperature information led to additional improvements for the mixing
ratios of graupel and snow. However, when humidity was assimilated with radial wind
and reflectivity, the mixing ratios of rain, graupel, and snow are improved by more than
20%. In particular, the mixing ratio of rain exhibited a more than 40% improvement
when assimilating water vapor (ZVrQv and ZVrTQv). Thus, radar DA with additional

thermodynamic variables also improved the distribution of hydrometeor variables when
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warm core and cold pool are better reproduced in the final analysis. The best experiment

is Exp. ZVrTQv2h that the RSCC score are all over than 0.3.

(b) Performance of short-term forecast

The short-term forecast was launched by the ensemble mean analysis at 1400 UTC,
and the results of 1-h (Fig. 5-10) and 3-h (Fig. 5-11) accumulated rainfall.

In a 1-h rainfall short-term forecast, the truth presents the rainfall accumulation
area as a rainband across northern Taiwan, and the maximum value is over 50-mm (Fig.
5-10a). For experiments on assimilating radar data, Exp. Vr (Fig. 5-10d) shows a wider
rainfall area than Exp. Z (Fig. 5-10c). Both assimilating Z and Vr, the rainfall forecast
is better in the case study but Exp. ZVr2h is similar to Exp. ZVr even with one more
one-hour assimilation of radar data. For the experiments of assimilating thermodynamic
variables, all of the four experiments of Exp. ZVrT (Fig. 5-10g), Exp. ZVrQv (Fig. 5-
10h), Exp. ZVrTQv (Fig. 5-101) and Exp. ZVrTQv2h (Fig. 5-10j), the rainfall in the
first hour presents a good structure in the rainband and the value is over 50 mm closed
to the truth. The best result is Exp. ZVrTQv2h (Fig. 5-10j) because including more
thermodynamic information at an early stage than Exp. ZVr2h (Fig. 5-10f).

The truth state in Fig. 5-11a reveals extreme heavy rainfall along the coast of
northern Taiwan. The rainfall accumulation in NoDA (Fig. 5-11b) was low, and the area
of precipitation was over the ocean because this experiment employed the mean
forecast from the random perturbations without DA. Figures 5-11¢ and d present the
results of rainfall accumulation when only one set of radar data (reflectivity or radial

velocity) was assimilated. The rainfall position in northern Taiwan was more accurate
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in the truth state than in the NoDA run (Fig. 5-11b), but the rainfall accumulation was
not sufficient to obtain a heavy rainfall signature. The results of Exp. ZVr (Fig. 5-11¢)
and Exp. ZVr2h (Fig. 5-11f) displayed the correct position of the total accumulated
rainfall. Exp. ZVr2h demonstrated a higher level of rainfall accumulation in northern
Taiwan because of the use of a longer assimilation period than in Exp. ZVr. More
observation information for model assimilation had a positive impact on the QPF, but
the intensity of the precipitation was weaker than that in the truth (Fig. 5-11a). On the
other hand, the QPF is improved when the thermodynamic variables were assimilated
(Figs. 5-11g, h, and 1). Figure 5-11g (Exp. ZVrT) depicts the rainfall accumulation area,
revealing improved values compared with ZVr2h (Fig. 5-11f). Thus, the additional
temperature information shortened the spin-up assimilation period. In Exp. ZVrQv and
Exp. ZVrTQv in which humidity information is assimilated (Fig. 5-11h), the location
and intensity of the rainfall were very close to the truth and the overestimation of
rainfall in the northwest was mitigated. For the last experiment, ZVrQv2h (Fig. 5-11j),
assimilating both temperature and humidity for 2 hours, the coverage and intensity of
the rainfall were the best performance presented in rainfall over 90-mm among all
experiments.

We check the FSSs of the short-term forecast for 1 (Fig. 5-12a), 3 (Fig. 5-12b),
and 6 (Fig. 5-12¢) h accumulated rainfall. FSS of Exp. Vr are higher than Exp. Z, and
the dynamic information is more important to maintain weather system for a good
rainfall forecast. Exp. ZVr2h shows clearly skill score than the experiment with only
one-hour radar assimilation. The experiments with water vapor are better than

experiment with temperature for the rainfall forecast. This also highlights that water
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vapor is key to prolonging the rainfall forecast results in the frontal event in this study.
The first hour rainfall forecast skill score FSS shows higher score of experiments with
temperature and water vapor (Exp. ZVrT, ZVrQv, and ZVrTQv) than Exp. ZVr2h (Fig.
5-12a). This result revealed that adding 3D temperature assimilation improved the
performance of radar DA for short-term rainfall forecasting and shortened the spin-up
assimilation period from 2 to 1 h. The best result is Exp. ZVrTQv2h that shows the skill
score higher than 0.3 till forecast 6-h by assimilating more thermodynamic variables

(Fig. 5-12¢).

5.4 Results of retrieval variables assimilation
(a) Performance of analysis

Temperature and water vapor information are retrieved from model truth (Exp.1)
by the retrieval algorithm TPTRS (Section 4.1c). The three experiments as ZVrTR,
ZVrQvR, and ZVrTQVR are listed in Table 4-1. Figures 5-13a—c present the low-level
convergence fields in the final analysis (1400 UTC). The convergence of Exp. ZVr'TR
revealed comparable intensity as Exp. ZVrT and better than Exp. ZVr2h. The
reflectivity field in Fig. 5-13d shows that the intensity of the strong convective is similar
as Exp. ZVrT and the truth state in northern Taiwan, but the line-shaped convective
rainband is not broadening enough. In Exp. ZVrQvR, the convergence (Fig. 5-13b)
inland was weaker than Exp. ZVrQv (Fig. 5-13h) and Exp. ZVrTR (Fig. 17a). Besides,
the simulated reflectivity (Fig. 5-13e) shows similar intensity and pattern as Exp.
ZVrTR. In Exp. ZVITQVR, the convergence (Fig. 5-14c¢) is similar to Exp. ZVrTR and

Exp. ZVrQvR, but a better rainband coverage and pattern in Fig. 5-13f was illustrated.
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Simulated reflectivity in Fig. 5-13f shows that the analysis could better represent the
line-shaped area as truth (Fig. 5-5a). The optimal results for convergence and
reflectivity among the three experiments come from Exp. ZVITQVR.

Figures 5-13g-i reveal the cross section of vertical velocity and temperature fields
as Fig. 5-7. In the experiment that only assimilated retrieved temperature with radar
(Exp. ZVrTR, Fig. 5-13g), the upward motion was stronger (up to 8 m s™!) than the other
two experiments (Exp. ZVrQvR and Exp. ZVrTQvR). The temperature perturbation
revealed the warm core at the mid-level as the truth (Fig. 5-7a), but the cold pool at the
low level was distributed in a smaller region compared to the truth and Exp. ZVrT
because the retrieved temperature has warm bias as mentioned in Section 4.1c. By
assimilating water vapor only (Exp. ZVrQvR, Fig. 5-13h), the warm core and upward
motion were weaker than Exp. ZVrTR at mid-level (Fig. 5-13g). On the other hand, the
structure of temperature perturbation showed a better distribution of the cold pool as
Exp. ZVrQv at the low level. The optimal result of temperature perturbation comes
from Exp. ZVITQvR (Fig. 5-131). The results revealed that the cold pool at the low
level and the warm core in the mid-level were close to the truth (Fig. 5-7a). Among the
three experiments, assimilating retrieved temperature enhanced the warm core structure
at the mid-level and strengthens the upward motion in strong convection areas. In
contrast, assimilating retrieved water vapor improved the intensity of cold pools near
the surface. Overall, the results demonstrated that assimilated retrieved thermodynamic

fields had a positive impact on the final analysis of the severe weather system.
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(b) Performance of short-term forecast

By launching the model from the ensemble mean of final analysis in Section 4.4a,
the benefit of assimilating retrieved thermodynamic information for the QPF was
examined. For the 1-h and 3-h total accumulated rainfall, ZVrTR (Figs. 5-14a, c) can
produce the local maximum rainfall over 50 mm. Even though the retrieved temperature
field has the warm bias compared with the truth, ZVrTR can better predict the local
maximum of the heavy rainfall with shorter DA period (1-h) compared with ZVr2h (Fig.
5-101). This is due to the warm core at mid-level and more intense upward motion in
the final analysis. In Exp. ZVrQvR, more precipitation occurred in the first hour (Fig.
5-14e), but the amount of precipitation was less than the truth state (Fig. 5-10a) and the
Exp. ZVrQv (Fig.5-11h) for 3-h QPF. The optimal result comes from Exp. ZVrTQvR
(Figs. 5-14c, f). The accumulated rainfall revealed a well line-shaped pattern and
coverage as the truth over northern Taiwan. In addition, the amount of the precipitation
was up to 70 mm though it was underestimated compared to the truth state (Fig. 5-10a,
Fig. 5-11a). The feasibility study shows that when assimilating the retrieved
thermodynamic fields with bias, providing temperature information has more QPF
improvement than assimilating retrieved water vapor. This is because more intense
upward motion and warm core are reproduced in the analysis when assimilating
retrieved temperature. Overall, when both retrieved temperature and water vapor are
assimilated, the result can still improve the QPF and outperform Exp. ZVr2h.

The FSSs of the short-term forecast for 1, 3, and 6 h accumulated rainfall was
displayed in Fig. 5-15. Among the three experiments, assimilating additional retrieved

temperature with radar data (Exp. ZVrTR) showed much more improvements of the
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short-term forecast in the first hour of the QPF (Fig. 5-15a), resulting in the highest
FSS. This was due to the warm core at mid-level and more intense upward motion
effected by the retrieved temperature with warm bias. For 3-h forecast (Fig. 5-15b), the
FSS showed the benefit of assimilating both retrieval temperature and water vapor (Exp.
ZVrTQVR), especially in the heavy rainfall condition (thershold over 30 mm). When
both retrieved temperature and water vapor are assimilated, the result shows the best
impact to improve the QPF after 3-h. For 6-h rainfall forecast, FSS of Exp. ZVITQvR

shows improvement than the experiment of assimilated only temperature or water vapor.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

An extremely heavy rainfall occurring on 11 June 2012 during the Mei-Yu season
was investigated in this study. By using multiple Doppler radar observations, wind,
pressure, and temperature fields were retrieved in time and space in order to examine
the interaction of dynamics, thermodynamics, and terrain effect on the mesoscale and
convective scale. The precipitation system is divided into three phases, and the
evolution of the barrier jets at the convective scale is revealed for the first time by
analysing the migration and intensity of the barrier jet within the first 4 hours when the
heavy rainfall took place.

At the first stage (TS-type), typical mesoscale convection occurred south of the
front, and the retrievals presented a squall-line structure when the system remained over
the ocean in the north of Taiwan. The horizontal wind at low levels demonstrated that
a barrier jet had already appeared along the west coast at this stage. A line convection
initialized by south-westerly flow developed and merged with the main precipitation
system. The system landed over northern Taiwan and went through a transition period
at the second stage: strong connection with upward motion inland favoured the
eastward displacement of the barrier jet. In the meantime, thermodynamic retrievals
illustrated a strengthened meso-low located inland of northern Taiwan, and the pressure
gradient force enhanced the intensity of the barrier jet. At the third stage (PS-type), the

location of the cold pool and the orography over northern Taiwan act as obstacles. When
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the cold outflow encounters the barrier jet, Y-shaped echo convection appeared at the
cold pool outflow convergence zone and then united to the main convection. These
features formed a favourable condition to maintain a strong convection around the same
location and cause extremely heavy rainfalls in a short period of time.

In this study, we examined the impacts of assimilating 3D thermodynamic fields
with radar data (radial wind and reflectivity). A series of OSSEs were designed, and
three sets of DA experiments were conducted using the WLRAS ensemble DA system.
Different types of thermodynamic variables were obtained from the truth state or
retrieved from the TPTRS retrieval algorithm. A frontal system that brought extremely
heavy rainfall to Northern Taiwan on 11 June 2012 was investigated. The results of both
analysis and very short-term forecast were examined through the three sets of
experiments, resulting in the following conclusions:

(1) In this particular case, which clearly demonstrated a precipitation position error in
the background, assimilating radar observations of radial wind and reflectivity
promptly corrected or reduced the position error of the convergence zone and rain
bands. In addition, when dealing with a multiscale weather system, such as the
frontal system in this study, increasing the assimilation period helped improve the
analysis and short-term forecast. However, improvements in the analysis of the
stratiform area were limited and the 6-h QPF was underestimated.

(2) In the OSSEs, providing additional information regarding the unbiased temperature
and/or humidity fields in the multiscale precipitation system shortened the spin-up
assimilation period as expected. In addition, the upward motion and warm core in

the mid-level and the cold pool in the stratiform areas were more improved through
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additional thermodynamic variables than through additional cycles of radial wind
and reflectivity assimilation. The improvement in the stratiform region further
benefited the hydrometeor variables, which were strongly associated with the
vertical structure of temperature. The results demonstrated that assimilating
thermodynamic variables achieved greater improvements (0—6 h) in extremely
heavy rainfall prediction than when only assimilating radar data. In addition,
assimilating humidity information alone yielded a stronger accumulated rainfall
performance than assimilating the 3D temperature field alone.

(3) In the study, we discuss the feasibility of assimilating retrieval 3D thermodynamic
with radar data. When the biased thermodynamic fields were obtained by a retrieval
algorithm, assimilating temperature information reproduced a stronger upward
motion and warm core at the convective area of the final analysis, and improved
the very short-term QPF at the first hour. Assimilating humidity field helped to
reconstruct the coverage and intensity of the cold pool near the surface. The
optimal result is to assimilate the 3D thermodynamic fields both temperature and
water vapor that could shorten a spin-up assimilation period to improve the QPF

up to 6 hours.

6.2 Future work

This study uses retrieval algorithm WISSDOM and TPTRS to analyze the
mechanism of frontal heavy rainfall and the interaction between the evolution of the
barrier jet and topography. The retrieval information is adding to the radar data

assimilation system to study whether the thermodynamic retrieval information can
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improve the structure of the model initial condition and the ability of rainfall forecast.

Although the results show a positive impact, there are still issues that we can continue

to explore.

(1) Carefully understand the causes of the thermal retrieval structure, discuss the
relationship between temperature and microphysics, and the related
configuration of pressure field and wind field. It is expected that by explaining
the state of the system under static and non-static conditions, we can have more
confidence in the retrieval results from TPTRS,

(2) Carefully compare the differences between the dynamic and thermodynamic
fields of the retrieved 3D information and the truth simulated by the model.
Check whether the interaction between the barrier jet and the complex terrain
is consistent at the small scales, and provide an analytical basis for the quality
of the assimilation results. In the future, the differences between the model and
actual observations can be explored the key influencing factors can be identified,
and the main points of the model to improve the small-scale simulation can be
provided.

(3) A more in-depth discussion and explanation of the phenomenon of warm
deviations in the retrieval temperature results and warm bias in the water vapor
are carried out. After it is added to the radar data assimilation system, the
resulting factors still need to be discussed more carefully.

(4) Whether different microphysical schemes will cause changes in the results of
assimilating thermodynamic variables is a topic worthy of discussion in the

future.
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(5) The research of real cases will encounter the problem of duplication of retrieval
data and radar data. In the future, different interpolation methods can be used
to generate data misalignment to avoid this problem.

Overall, this study demonstrated that assimilating 3D thermodynamic fields in
addition to radial wind and reflectivity was important and crucial to improve the
analysis and QPF for convective weather systems. In addition, it was possible to
assimilate 3D thermodynamic fields from scanning weather radars. In the study,
thermodynamic variables are temperature and mixing ratio of water vapor.
Thermodynamic variables could be represented as virtual temperature, potential
temperature, equivalent potential temperature, relative humidity, ... etc. We can
study which variables are efficiently to improve numerical model analysis and QPF.
As a next step, we are preparing to assimilate the following information in the
WLRAS: (1) low-level information from surface observations and (2) humidity
information from radar refractivity and/or dual-wavelength retrievals. The evaluation
and verification of QPFs will be examined with real cases of severe weather systems

such as typhoons and thunderstorms.
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Figures

(a) Horizontal localization (b) Vertical localization
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Fig. 2-1. (a) Horizontal localization: location of the model variable (black dot), locations of observation
data within the localization area (gray triangles) or outside (white triangles), localization distance
(double-headed arrow), localization range (dashed line); (b) Vertical localization: location of the model
variable (black dot), localization distance (double-headed arrow), localization area (dashed line and gray

shaded).

(b) 850 hPa

T
.

o004
* gwi
w®

P AR

12007 3,07/ 55

-

7

Fig. 3-1. Weather maps at 1200 UTC 11 June 2012: (a) surface; (b) 850-hPa, black dashed line is trough.
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Fig. 3-2. The composite reflectivity of RCWF radar on 11 June 2012 at: (a) 1200 UTC; (b) 1230 UTC,;
(c) 1300 UTC; (d) 1330 UTC; (e) 1400 UTC; (f) 1430 UTC; (g) 1500 UTC; (h) 1530 UTC; (i) 1600
UTC. C1, C2, C3 and C4 indicate the main convection of the precipitation system (reflectivity > 40 dBZ)
in different stages. S1, S2 and S3 are the line convection that occurred in different stages. (j) The contours

of 40 dBZ shows repeated Y-shaped reflectivity at 1430 UTC and 1530 UTC.
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(a) 1400UTC vertical velocity 5—km (b) 1400UTC wind field 1-km
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Fig. 3-3. Retrieved result at 1400 UTC 11 June 2012: (a) vertical velocity (colour shaded, unit: m s™) at
5 km and convergence area (green contour, interval is 0.5x1073 s7!) at 1 km; (b) horizontal wind speed
(unit: m s ) and wind vector at 1 km height (blue colour shows wind retrieved with radar observations,
and grey colour indicates retrieved wind beyond radar observations); (c) vertical cross-section of radar
reflectivity (colour shaded, unit: dBZ) and the horizontal wind speed (contour lines); (d) cross-section of
vertical wind (colour shaded, unit: m s™') and wind vector relative to the system motion. Retrieved
thermodynamic perturbations (e) pressure at 2 km; (f) temperature at level 2 km (shaded), and wind

direction of relative background at 1-km height (vector).
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(a) 1400 UTC Vertical Vorticity and Tendency (b) 1400 UTC Vertical Vorticity budget:
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(c) 1530 UTC Vertical Vorticity and Tendency (d) Schematic diagram of the evolued barrier jet
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Fig. 3-4. (a) Barrier jet (J1), the vertical vorticity fields (colour shaded, interval is 4*10 s*") and vertical
vorticity tendency (contour lines, 0.5 and -0.8*107 s2) on 1-km level from WISSDOM at 1400 UTC; (b)
Vertical vorticity budget of 1-km height at 1400 UTC: tilting term (colour shaded, interval is 0.5*10°° s°
1) and stretching term (contour lines, 0.2 and 0.5 *10° s7'); (c) same as (a), but at 1530 UTC and J,
indicates the location of the barrier jet; (d) schematic diagram to show the migration and enhancement
of the barrier jet. Thinned arrows present the strength of the wind below 3-km height, vortex line is
stretched by the upward motion (blue arrow) and induced a pair of vorticity tendency, pink arrows with
dashed line is the original barrier jet and solid line is the evolved barrier jet; H and L refer to the location

of high and low pressure, respectively.
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Fig. 3-5. Schematic diagrams to demonstrate the mechanism of the extremely heavy rainfall event. (a)
Pre-frontal convection forms a TS-type precipitation over the ocean, and the line convection is triggered
due the cold outflow encountering a warm and humid southwesterly flow; (b) the strengthened cold pool
and enhanced barrier jet repeatedly triggered the Y-shaped echo line convection, then merge with the
main convection to form a PS-type precipitation over northern Taiwan. The location of the Mei-Yu front
and the warm/humid southwesterly flow (red arrow) illustrate the environmental condition of the
synoptic scale over Taiwan. The location of the cold pool and the orography in northern Taiwan blocks

the displacement of the main convection.
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Fig. 4-1. Domain nesting of the WRF model with horizontal grid spacing of 27 (251 x 261 points), 9
(337 x 271 points), and 3 (223 x 232 points) km, respectively.
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Fig. 4-2. Reanalysis fields of (a), (b) potential height (blue line), potential temperature (red line), and
wind vector (gray vector) at 850-hPa; (c), (d) water vapor mixing ratio at 925-hPa at 0000 UTC 11 June
2012. (a), (c¢) ERA-interim for the truth run; (b), (d) NCEP for the NoDA and OSSE experiments.
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Fig. 4-3. Reflectivity at 2.5-km height (shaded) in d03 shows the rainband (black-dashed line) located at
northern Taiwan at 1400 UTC in (a) “truth” simulated from the initial condition ERA-interim 0.75° x
0.75° and (b) NoDA simulated from the initial condition NCEP-FNL 1° x 1°. The black solid line in 5a
is a vertical cross-section portion between (120.75°E, 25.93°N) and (121.18°E, 24.64°N). The dotted

square shows the focused area in the study.
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Fig. 4-4. The super observation points (gray) of simulated observations averaging 5-km in the radial
direction and 5° in the azimuthal direction on every sweep from RCWF (121.77°E, 25.07°N) and NCU-
CPOL (121.18°E, 24.97°N). The gray marks (*) are the radar locations of RCWF (white) and NCU-
CPOL (black).
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Fig. 4-5. Temperature perturbation (a), (b) at 0.5-km height; (c), (d) at 1.5-km height; (e), (f) Vertical

cross-section of temperature perturbation along dashed line in (a) at 1400 UTC. (a), (¢), (e) are truth; (b),
(d), (f) are Retrieved by TPTRS at 1400 UTC.
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Fig. 4-6. (a) Vertical cross-section of retrieved temperature perturbation along dashed line in (b) at 1400
UTC. (b) Retrieved water vapor at 1.5-km height at 1400 UTC. (c) Vertical profile of retrieval
temperature RMSE and BIAS. (d) Scatter plot of water vapor between truth model and retrieved by

TPTRS.
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Fig. 4-7. The schematic design of the study strategy. The single lines (solid and dotted) refer to a single

run, while the triple lines represent ensemble simulations. The dotted lines indicate the model spin-up

period from 0000 UTC 11 June 2012 to 1200 (or 1300) UTC. The gray area indicates the data assimilation

period for two (or one) hours experiment and the dashed vectors show the frequency of assimilating data

every 15-min.
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Fig. 5-1. The ensemble spread on 2500 m height at 1300 UTC. (a) Z; (b) T; (¢) Qv; (d) Qr; (e) U; (f) V.

Fig. 5-2. Auto-correlation on 2500 m. Blue mark (*) means the location of reference variable that shows

on the first variable of title. (a) U; (b) V; (¢) Qv; (d) T.
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Fig. 5-3. Root mean square error in assimilation period (a) Z (unit: dBZ); (b) Vr (unit: m s™!); (c) T (unit:

K); (d) Qv (unit: g kg™).
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Fig. 5-4. The low-level convergence field (shaded, units: 10 s™) and wind vectors are shown at a 1-km

height of 1400 UTC and focus on a small area of northern Taiwan from d03: (a) Truth; (b) NoDA; (¢) Z;
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Fig. 5-5. Reflectivity field on 2.5-km height at 1400 UTC. (a) Truth; (b) NoDA; (¢) Z; (d) Vr; (e) ZVr;
(f) ZVi2h; (g) ZVrT; (h) ZVrQv; (1) ZVrTQv; (j) ZVrTQv2h.
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Fig. 5-6. Vertical cross-section of reflectivity (shaded colors) at 1400 UTC as the black solid line in Fig.
Sa: (a) Truth; (b) NoDA; (¢) Z; (d) Vr; (e) ZVr; (f) ZVr2h; (g) ZVrT; (h) ZVrQv; (1) ZViTQv; (j)
ZVrTQv2h.
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Fig. 5-7. Vertical velocity (shaded) and Potential temperature perturbation (contours, solid lines are
positive values while dashed line are negative values with contours of -1.5, -1.2, -0.5, 1.0, 3.0, 5.0 K) at
1400 UTC shown on vertical cross-sections as in Fig. 5a: (a) Truth; (b) NoDA; (c) Z; (d) Vr; (e) ZVr; (f)
ZV12h; (g) ZV1T; (h) ZVrQv; (1) ZVITQv; (§) ZVITQv2h.
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Fig. 5-8. The mixing ratios of graupel(Qg), snow(Qs), and rain(Qr): (a) Truth; (b) NoDA; (¢) Z; (d) Vr;
(e) ZVr; (f) ZVr2h; (g) ZVrT; (h) ZVrQv; (1) ZVrTQv; (§) ZVrTQv2h.
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Fig. 5-9. Improvement of final ayalysis at 1400 UTC in spatial correlation coefficient of hydrometer

variables compared with Exp. ZVr. Qg, Qs, and Qg refer to the mixing ratios of graupel, snow, and rain.
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Fig. 5-10. Rainfall accumulation at northern Taiwan in d03 from 1400 UTC to 1500 UTC. (a) Truth; (b)
NoDA; (c) Z; (d) Vr; (e) ZVr; (f) ZVr2h; (g) ZVrT; (h) ZVrQv; (i) ZVrTQv; (§) ZVrTQv2h.
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(g) ZVrT - (h) ZVrQv
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Fig. 5-11. Rainfall accumulation at northern Taiwan in d03 from 1400 UTC to 1700 UTC. (a) Truth; (b)
NoDA; (c) Z; (d) Vr; (e) ZVr; (f) ZVr2h; (g) ZVrT; (h) ZVrQv; (1) ZVrTQv; (§) ZVrTQv2h.
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Fig. 5-12. Fractions Skill Score (FSS) of (a) 1-hr, (b) 3-hrs and (c) 6-hrs rainfall accumulation from 1400
UTC by deviation distance 24-km.
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Tables

Table 3-1. Features on the precipitation system in three stages.

Stage State Time (UTC) Description
Fast speed The stage of precipitation system
! (15 km hr!) 1200 t0 1230 squall line structure
Lan(.il.ng 1300 to 1400 New cell merges to main convection
(transition) region
Quasi- Extremely heavy rainfall happens at

. 1430 to 1600
stationary same area

Table 3-1. Features on the precipitation system in three stages.

Table 4-1. Summary of OSSE Experiments.

. e Assimilation Assimilation
No. Experiment Imt_lifl A551m1.lat10n Radar thermodynamic
condition period data information
1 Truth ERA-interim - - -
2 NoDA NCEP-FNL - - -
3 z NCEP-FNL 1h V4 -
4 Vr NCEP-FNL lh Vr -
5 ZVt NCEP-FNL 1h Z,Vr -
6 ZV12h NCEP-FNL 2h Z,Vr -
7 ZViT NCEP-FNL lh Z,Vr T
8 ZV1Qv NCEP-FNL 1h Z,Vr Qv
9 ZNTTQv NCEP-FNL lh Z,Vr T, Qv
10 ZViTQv2h NCEP-FNL 2h Z,Vr T, Qv
' 11 ZVITR NCEP-FNL lh ------------ Z,"\'/'r ' Retrieved T
12 ZVTQvR NCEP-FNL 1h Z, Vr Retrieved Qv
13 ZVITQVR NCEP-FNL 1h Z,Vr Retrieved T, Qv

Table 4-1. Summary of OSSE Experiments: Exp.1 (truth) and Exp.2 (NoDA) are simulated from ERA-
interim and NCEP-FNL reanalyses, respectively. There are three sets of data assimilation in the study: 1)
Exps. 3—6 that only assimilate radar data (Z and/or Vr). 2) Exps. 7—10 that assimilate radar data with
additional thermodynamic data (T and/or Qv) generated from Exp.l (truth). 3) Exps. 10—13 that

assimilate radar data with thermodynamic data retrieved via TPTRS.
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