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Abstract

The accuracy of flood simulations depends on multiple factors, with precipitation data
uncertainty being a key influence. Therefore, selecting an appropriate combination of
meteorological data and flood models is essential for effective flood management. This study
presents a framework that emphasizes the importance of high-temporal-resolution precipitation
data by integrating five types of precipitation datasets: designed rainfall, two quantitative
precipitation estimation (QPE) products, and the nowcast system MAPLE (McGill Algorithm
for Precipitation Nowcasting using Lagrangian Extrapolation). These datasets were used as
inputs for the hydrodynamic model 3Di.

An idealized experiment revealed that flooding may be underestimated when heavy
rainfall occurs within a short duration, particularly less than one hour, if only hourly rainfall
data is used, underscoring the necessity of finer temporal resolution in flood forecasting. Six
heavy rainfall events from 2024 in northeastern and southwestern Taiwan were analyzed,
leveraging improved data availability from these events to validate the flood model. The results
demonstrate that higher temporal resolution enables earlier flood detection, which is critical for
early warning systems. Additionally, when rainfall intensity increases, the discrepancy between
flood extents generated by different datasets becomes more pronounced. Furthermore, MAPLE
provides reliable short-term forecasts within one hour, though any forecast errors may be
amplified when incorporated into the flood model. These findings highlight the importance of
precise precipitation data in flood simulations and the potential challenges associated with

forecast uncertainty.
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Chapter 1. Introduction

In Taiwan, the occurrence of extreme rainfall, precipitated by tropical
cyclones, frequently results in disastrous flooding. This phenomenon has been
associated with significant societal and economic consequences, including
injuries, property damage, and economic losses. The topography of Taiwan is
characterised by a high degree of slope, a high population density, and rapid
urbanisation. These factors combine to amplify the risk of flooding, particularly
in low-elevation and coastal regions. Flood management has become increasingly
difficult in recent years due to climate change, which has increased both the
severity and frequency of extreme weather occurrences. (Zwiers et al. 2013;
Trenberth 2010; Lawrence et al. 2013). To mitigate the impacts of flooding, it is
crucial to have accurate weather forecasts, real-time hydrological monitoring, and

efficient flood management strategies.

Flood forecasting faces many sources of uncertainty, including rainfall input,
model structure, model parameters, and terrain characteristics (Papaioannou et al.
2017). Rainfall input serves as the internal forcing for flood models. However,
uncertainties in rainfall input remain a major challenge, directly influencing the
accuracy of flood forecasts. With advancements in computational techniques and
observational technology, numerical weather prediction (NWP) systems have
significantly improved in recent years, providing high-resolution rainfall
forecasts for flood modeling (Cloke and Pappenberger 2009; Alfieri et al. 2012).
However, initial forecasts from numerical weather models are often unreliable

due to spin-up issues (Saadi et al. 2023; Hsu, 2023).



To overcome this limitation, quantitative precipitation nowcasts (QPN)
provide short-term rainfall predictions with high temporal resolution. One widely
used technique is radar extrapolation, which relies on a motion field derived from
previous radar echoes. This motion field is then applied using advection or other
schemes to generate forecasts. The McGill Algorithm for Precipitation
nowcasting by Lagrangian Extrapolation (MAPLE) system is one of the QPN
approaches. Previous studies have demonstrated MAPLE’s capability in
nowcasting precipitation across different regions, including North America,
Korea, and Europe (Germann and Zawadzki, 2002; Turner et al., 2004; Germann
et al., 2006; Bellon et al., 2010; Lee et al., 2010; Mandapaka et al., 2011). In
Taiwan, MAPLE was first applied by Pan et al. (2018) to evaluate its performance
during typhoon events and a Mei-Yu event. Their results demonstrated that
MAPLE can provide an effective forecast duration of approximately 2 hours. A
subsequent study (Chung and Yao 2019) analyzed 16 typhoon cases, providing a
statistical assessment of MAPLE’s performance at different stages of typhoon

progression.

Beyond rainfall accuracy, the spatiotemporal variability of precipitation also
introduces considerable uncertainty in flood estimation, particularly in small
urban basins. These catchments typically exhibit a rapid hydrological response
and are highly sensitive to the distribution of rainfall due to the prevalence of
impervious surfaces, such as roads and buildings, which promote rapid runoff and
limit infiltration (Emmanuel et al. 2012; Ochoa-Rodriguez et al. 2015). These
conditions underscore the need for flood forecasting strategies that account for

both the accuracy of rainfall and the localized surface characteristics.



Terrain characteristics further contribute to modeling uncertainty by
influencing how surface water is routed and stored. Accurate terrain
representation is especially crucial in hydrodynamic simulations. Lai (2022), for
example, compared the performance of two hydrodynamic models, 3Di and
HEC-RAS, under different return period scenarios in Taiwan. The study found
that 3Di provided more realistic and detailed inundation maps, benefiting from
quadtree and subgrid techniques that preserve terrain detail while reducing
computational load. Similarly, Hsu et al. (2016) demonstrated that the resolution
of digital elevation models (DEMs) can significantly affect model performance.
Coarser DEMs often oversimplify topographic features, which may distort

hydraulic gradients and result in unrealistic flood extents.

Verifying hydrodynamic models is challenging due to limited observational
data (Wing et al., 2017). Traditionally, flood model validation relied on surveys
and eyewitness reports. However, in recent years, loT-based flood sensors in
Taiwan have provided quantitative measurements of water depth on roads and
low-lying areas. Meanwhile, Satellite-based Synthetic Aperture Radar (SAR)
sensors are also widely recognized for their effectiveness in flood detection by
distinguishing water bodies through their low scatter values. SAR offers the
advantage of penetrating cloud cover and providing flood extent at a two-
dimensional scale, and it has been successfully used to calibrate hydrodynamic
forecast models (Schumann et al., 2009; Grimaldi et al., 2016). However,
meteorological and surface features can affect SAR backscatter characteristics,
leading to false detection. For example, radar shadow and surface covered by
buildings and vegetation may obscure flooded areas (Grimaldi et al. 2016). Many

previous studies have relied on a single type of flood observation data, limiting

3



the ability to comprehensively assess flood conditions.

Flood simulation accuracy is highly sensitive to the temporal resolution and
distribution of rainfall input. Traditional models often assume uniform rainfall
distribution, which may not accurately represent short-duration, high-intensity
events that drive urban flooding. This study aims to investigate the impacts of
rainfall time resolution on flood simulation using the 3Di hydrodynamic model
and to assess the value of different rainfall input types, including nowcasting and

QPE products, in improving prediction accuracy and early warning capabilities.

Idealized rainfall scenarios were first designed to test the model's sensitivity:
both with the same one-hour total rainfall but different temporal distributions, one
evenly spread and one concentrated in 10 minutes, and one in 30 minutes. The
results show that the scenario which the rainfall concentrated in 10 minutes has
higher inundation area, indicating the 3Di model is capable of distinguishing
between different rainfall distributions, confirming the critical role of rainfall
intensity. In real cases, the 3Di model was applied to six real flood events in
Taiwan, integrating high-resolution (1-meter) DEMs to capture terrain features
and guide overland flow paths with Rainfall inputs included two quantitative
precipitation estimation (QPE) products and MAPLE nowcasting data, indicating
the higher temporal resolution of QPE can detect flood earlier. Moreover,
MAPLE nowcasting capture overall trend in Kaohsiung, while the forecast error,
and the higher-sensitivity of smaller basin lead to more discrepancy in Dongshan.
These findings highlight the importance of fine-scale rainfall data in operational

flood forecasting and early warning systems.

The Model validation employed a combination of witness reports, flood



sensors, and SAR (Synthetic Aperture Radar) imagery, offering both point-based
and spatial assessments. In urban areas like Kaohsiung, where observational data
are more abundant, the model performed reliably, and SAR imagery further

enhanced spatial validation.

This study is organized as follows. Chapter 2 presents the study area and
selected cases. Chapter 3 introduces the hydrological models, QPE data,
nowcasting system, and the evaluation framework. Chapter 4 introduces the
verification data and approaches. Chapter 5 discusses the results of the idealized
test, nowcast performance, hydrodynamic model verification, and the
hydrological performance of varying precipitation input. Conclusion and future

work are covered in Chapter 6.



Chapter 2. Study area and cases overview

2.1 Study area

Two different characteristic regions are selected for the study, one is the
Dongshan River basin, located in Yilan, northeastern Taiwan. The area is
112.718km?, where the average annual precipitation is about 3000 mm. In Yilan
County, rainfall is concentrated during the autumn and winter months from
August to December. Typhoons and the northeast monsoon often bring heavy
rain. Dongshan Township, which is mostly flat, is traversed by the Dongshan
River and Luodong River, making it at risk of river flooding and inundation. In
the southwestern part of the first study area is relatively elevated, while the
northeastern area is flatter. As a result, during heavy rain or typhoons, flooding is
more likely to occur in the northeastern region. If this occurs with high tide, it can
further hinder the drainage of floodwaters, making it difficult for flooding to

subside.

Another is located in southwestern Taiwan. Unlike the Dongshan River
basin, the selected region covers some rivers, including the Erren River,
Agongdian River, Dianbao River, Cianjhen River, Houjin Creek, Love River, and
Yanshuei River, as well as the main city in southern Taiwan, Kaohsiung. This
region is hereafter referred to as the Kaohsiung basin. The area of the Kaohsiung
basin is 939.473 km?, and the average annual precipitation is about 2000 mm,
most of which is concentrated in the summer and autumn. The long-duration

flood is typically caused by a tropical cyclone and the southwesterly flow



associated with it. The eastern boundary of the Kaohsiung basin is bordered by
the Central Mountain Range, and the rivers generally flow westward toward the
Taiwan Strait. This topographic configuration results in short and steep rivers,
which respond rapidly to intense rainfall, increasing the risk of flash flooding and

overwhelming the urban drainage system during extreme weather events.

2.2 cases overview

Six heavy rainfall events in 2024 and one additional event in 2018 are
selected in the study (Table 1). The accumulated precipitation during the flood
simulation is shown in Figure 1. The outer circulation of Typhoon Gaemi began
affecting Taiwan on the morning of July 23, with the eastern region experiencing
the initial impact. The typhoon approached its closest point to Taiwan on July 24
and 25, bringing intense rainfall primarily to northeastern Taiwan. In addition to
making direct landfall, Typhoon Gaemi lingered along the coast of Hualien,
resulting in prolonged and heavy rainfall across multiple regions before
eventually making landfall in Hualien. As the typhoon moved northwest away
from Taiwan, it was accompanied by a strong southwesterly flow, which
triggered further heavy rainfall in southern Taiwan. Due to the spatial and
temporal variation in rainfall intensity, the simulation start times differ for each
basin: for the Dongshan Basin, the simulation begins at 04:00 UTC on July 24,

2024, while for the Kaohsiung Basin, it begins at 12:00 UTC on the same day.

Typhoon Krathon affected Taiwan from October 2 to October 4. Due to its
slow movement, Typhoon Krathon allowed continuous moisture convergence

over the island, enhancing rainfall accumulation in affected regions. On October



3, Typhoon Krathon made landfall in Kaohsiung, causing heavy rainfall and
severe flooding in southern Taiwan. In addition to the impact on the south, the
typhoon's circulation interacted with prevailing northeasterly winds, resulting in
orographic lifting and significant rainfall over northeastern Taiwan, including the
Dongshan Basin. To reflect the timing of rainfall onset, different simulation start
times were assigned for each basin. For the Dongshan Basin, the simulation
begins at 08:00 UTC on October 3, 2024, while for the Kaohsiung Basin, it begins
at 00:00 UTC on the same day, aligning with the earlier arrival of heavy rainfall

in southern Taiwan.

Typhoon Trami and Typhoon Toraji did not make landfall in Taiwan.
Instead, as they passed through the Bashi Channel and the Philippines, they
enhanced northeasterly winds, leading to heavy rainfall and resulting localize
flooding in the Dongshan Basin. Due to the timing of rainfall, the simulation for
the Dongshan Basin begins at 04:00 UTC on the day when heavy rainfall started
to intensify under the influence of each respective typhoon, October 24 and
November 12, respectively. Since Kaohsiung was not significantly affected by
rainfall during these events, no simulations were conducted for the Kaohsiung

Basin for these cases.

An additional event that occurred in 2018 was used solely for calibration to
enhance the reliability of the model. In 2018, Taiwan was affected by a low
pressure in the south, and a tropical low pressure passed through the western coast
of Taiwan on August 23~24, and a low pressure system and southwesterly airflow
from August 25 to August 28, bringing more than 1,000 millimeters of rainfall to

the southwestern region, which resulted in a total of $871.99 million in



agricultural losses and extensive and long-term inundation.

Chapter 3. Data and Methodology

3.1 3Di Hydrodynamic Model

3Di hydrodynamic model (Stelling et al., 2012) is a new simulation software
system developed in the Netherlands by Stelling Hydraulics, Deltares, TU Delft,
and Nelen & Schuurmans, consisting of a computational core, an application
programming interface (API), the modeler interface, and 3Di Live site. The
modeler interface provides integration with QGIS so that users can edit or analyze
the model visually and interactively. The user can check the simulation in real
time by using the 3Di Live site. The simulation results in an inundation data set
containing water level, area, and water depth, which users can process
additionally. It is good at simulating urban flooding and natural river flow through
the simultaneous calculation of surface water movement and its interactions with
existing sewer systems. Moreover, 3Di takes advantage of its high resolution and

faster simulation speed by applying the quadtree and sub-grid techniques.
3.1.1 Governing equation

The 2D depth-averaged shallow water equations (Stelling, 2012) serve as
the foundation, the continuity equation and momentum equations in the x and y

directions are as follows:
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Where h(x,y,t) iswater depth, tistimestep, u(x,y,t) and v(x,y,t)are depth-
averaged velocities, g is the acceleration of gravity, c, represents a

dimensionless friction function.

The relationship between water level and water depth is:

h(x,y, 1) = {(x,y,0) —e(xy) (3.4)

where {(x,y,t) isthe water level and e(x,y) is the bottom elevation.

3.1.2 Computational grid

In 3Di, computational grids are all squares but varying in size, where
velocities and discharges are defined at the cell borders, while water levels and
volumes are defined at the middle of the cell. The number of computational cells
in a simulation has a significant impact on its computational cost. It is always
necessary to strike a balance between computing time and grid resolution. To
optimize the grid resolution and reduce computational cost, 3Di applies the
quadtree method. Figure 2 illustrates the concept of two techniques. The quadtree
method splits cells into four quadrants from the coarsest to the finest resolution
gradually in areas with small elevation differences. Local grid refinement allows
users to concentrate on areas with more intricate flows or where finer-grained
findings are needed. Instead, other regions are appropriately simplified to

preserve the overall flow characteristics, and the number of computational grids
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can be reduced, which helps improve computational efficiency. The maximum
quadtree level (kmax) is used to determine the largest possible computational grid

size. The relationship is as follows:
Largest grid size = smallest grid size x 2kmax=1 (3.5)

Flow is strongly influenced by the water depth. The flow acts entirely
differently, yet the depth is only slightly changed. Therefore, water depth
information is essential for accurately simulating flow. Despite the increasing
availability of detailed water depth information, it is challenging to incorporate
comprehensive grid information without significantly raising computing costs.
Subsequently, the sub-grid method is used to find the best balance between
accuracy and computing cost. The sub-grid technique is based on grids with
different resolutions that allow the water depth to change within a computation
grid while the water level remains the same. All input data, such as the DEM,
roughness, and infiltration rates, can be specified on the high-resolution grid.
However, instead of using a high-resolution grid for simulation, the water levels
and velocities can be calculated faster by clustering the high-resolution DEM

pixels into calculation grids.

3.1.3 Model configuration

The parameter settings are displayed in Table 2. To develop the flood model,
1m spatial resolution Digital Elevation Model (DEM), along with a roughness
map and infiltration map derived from the land use map of the research area, are
necessary for the two-dimensional domain; they are illustrated in Figure 3 and

Figure 4. Besides infiltration, water can exit the system through boundary
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conditions. All boundary conditions in this study are defined in the one-
dimensional (1D) domain, with the downstream water level set to -3 meters at the
river mouth. This value is chosen to ensure unimpeded discharge into the sea

under the assumption of no tidal influence.

In addition, 3Di supports four sewerage structures, including pipes, weirs,
orifices, and pump stations. They were built in a one-dimensional network and
connected with connection nodes and manholes in the model. In simulations, the
model calculates the volume and water level of each manhole, based on the

upstream and downstream manhole water levels as well as pipe characteristics.

3.2 Observed rainfall data

Quantitative Precipitation Estimation provides a high-resolution radar
observation and quantitative precipitation estimation. The product is adopted as
the basis for extrapolation in the MAPLE nowcasting system, calibrating

precipitation nowcasting, and running the 3Di model.

3.2.1 Radar network in Taiwan

The composite radar observations are from 4 S-band radars (RCWF, RCCG,
RCKT, and RCHL) and 6 C-band radars (RCCK, RCGR, RCLY, RCMK, RCNT,

and RCSL), the locations of 10 radars are displayed in Figure 5.

The Composite Reflectivity data provides the most complete observation of
reflectivity data, with 0.0125° horizontal resolution and 10-minute temporal
resolution. Coverage from 115°E to 126.5°E, 18°N to 29°N, serves as the input

for applying VET. For assessing forecast performance of MAPLE and used as the
12



input of 3Di, the reflectivity is converted to rain rate by the Z-R relationship

(Chen et al. 2017).

7 = 223.04 x R151 (3. 6)

3.2.2 QPESUMS

Quantitative Precipitation Estimation and Segregation Using Multiple
Sensors (QPESUMS) was obtained from the Central Weather Administration
(CWA), is an operational product derived from different precipitation estimate
algorithms based on the characteristics of each radar, and is further corrected with
rain gauge observations (Chang et al., 2021). This product provides 1-h

accumulated precipitation in a 10-minute time interval.

Another QPE product is QPESUMS10M, which is experimental and
provides 10-minute accumulated precipitation every 10 minutes. However,
QPESUMSI10M is not corrected with rain gauge observations and is only
available after September 2022. These two products have the same spatial
(0.0125°) and cover the same spatial window from 118°E to 123.5°E, and 20°N

to 27°N.

Even though the two QPEs are not exactly equal (one is calibrated by the
rain gauges), we use both of them instead of two experimental products, such as
QPESUMSI10M, and QPESUMS10M accumulate to one hour, is due to

QPESUMS is the most accurate operational QPE available.
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3.3 MAPLE nowcasting system

McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation
(MAPLE) is a nowcasting system developed by the J. S. Marshall Radar
Observatory of McGill University. MAPLE determines the motion field based on
the prior radar echo data using Variational Echo Tracking (VET). Then it
generates a nowcast by a semi-Lagrangian backward scheme during the forecast

period.

3.3.1 Variational Echo Tracking (VET) technique

The VET technique, originally described by Laroche and Zawadzki (1995),
derives the velocity field of radar reflectivity echoes. Here, we apply this to
calculate the motion field of the composite radar network. The cost function can

be represented through the following two constraints:

Jver(w) = Jy +Jy 3.7

u is the two-dimensional motion vector, calculated by minimizing the cost
function. The function J, isdefined as the conservation of reflectivity constraint
which is the sum of squares of the echo residuals in the domain, j, is a
smoothness penalty function that smooths the motion field by the second-order

space derivative. They may be respectively expressed as follows:

Jy = U B(x) [¥(ty,x) — W(t, — At,x — uAt)]? dx dy (3.8)
Q

where P(x) is the weight assigned to this smoothness constraint, ¥ is the
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observation of reflectivity, X is position, t, is the initial forecast time, and At

is the time interval between two consecutive observation echoes.
a2u\’ a2u\’ 92u \° a2v\°
we ]G +(5) +2(s) + ()
a2v\° 92p \’
4_<5§5> +(09«93’) ]dXdy

where y is the weight of the smoothness constraint, u and v are the motion

(3. 9)

vectors of reflectivity in axis-x and axis-y, Q is the domain of the motion field
calculation. The optimal motion field is found by gradually increasing the
resolution using the scaling-guess approach created by Laroche and Zawadzki
(1994) to prevent the likelihood of convergence towards a secondary minimum.
It is to be noted that the motion vector is more reliable in precipitation area rather
than isolated echoes or no-echo region. There are some adjustable parameters
which are number of images, time interval of images, reflectivity threshold,
relative weights  and y , number of scaling guesses, vector density of each
scaling guess, amount of smoothing, and temporal smoothing. The parameters

setting is displayed in Table 3.

3.3.2 Semi-Lagrangian advection

Once the VET technique has been utilized, the motion field is interpolated
at each grid point using bilinear interpolation. Germann and Zawadzki (2002)

developed a semi-Lagrangian approach that can be used to generate the nowcasts:

T = NAt (3. 10)
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a=Atu(tO,x—%) (3. 11)

where T is the length of forecast time, and « is the displacement vector. The
advection scheme can be divided into N timesteps (At). Thus, we can generate
the suitable o from wu with respect to each timestep. In this method, the

displacement of the system, including rotation, can be well simulated.

3.4 Experiment setting

The two figures (Figure 6) illustrate the distribution of rainfall intensity (mm
per 10 minutes) during major rainfall events in Northeastern and Southwestern
Taiwan, which cover the study area (Figure 7). Both regions exhibit a decay
distribution, where lower rainfall intensities are far more frequent than extreme
ones. However, the characteristics of rainfall events differ between the two
regions in terms of frequency and intensity. For northeastern Taiwan, the most
frequent rainfall intensity is 0.5 to 1 mm/10min with 464,068 occurrences, and
gradually decreases as intensity increases. The maximum recorded rainfall is 36.5
mm/10min, and 291 occurrences exceeded 20 mm/10min, demonstrating that
such extreme events are possible and measurable. For southeastern Taiwan, the
most frequent rainfall bin is slightly higher, around 2 mm/10min (541,035
occurrences), indicating a tendency for heavier moderate rainfall compared to the
Northeast. The maximum recorded rainfall is 81.1 mm/10min, showing that
extremely high rainfall rates can develop. Also, 3,042 occurrences exceeded 20
mm/10min, confirming that these events are not isolated and must be considered

in hydrological analysis. Given this, setting 20 mm/10 min as an idealized rainfall
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intensity for 3Di simulations is essential to assess potential impacts.

The rainfall exceeding 20 mm in 10 minutes is possible to occur due to
tropical cyclones or other weather systems, and knowing when and where is
critical. To accurately capture these events, a 10-minute Quantitative
Precipitation Estimation (QPE) system providing 10-minute accumulated rainfall
is necessary. However, the operational QPE product in Taiwan, QPESUMS, only
provides a 10-minute time resolution but one hour of accumulated precipitation.
This will provide real-time monitoring, helping to identify areas experiencing

intense rainfall.

For QPESUMS and QPESUMS10M, precipitation is fed directly into 3Di
with their respective temporal resolutions, hourly and 10 minutes. For QPN from
MAPLE, we generate a 1-hour-long time series of nowcast precipitation every
hour with a temporal resolution of 10 minutes. Using the Z-R relationship, hourly
precipitation can be derived from reflectivity. The following three nowcast
strategies have been applied: Radar echo data is transformed into precipitation
over 10-minute, 30-minute, and 60-minute intervals using the Z-R relationship.
These QPN are then fed into the 3Di model every 10 minutes, 30 minutes, and 60
minutes, referred to as MAPLE10mins, MAPLE30mins, and MAPLE60miIns,

respectively. The diagram is shown in Figure 8.

Figure 9 illustrates the overall workflow of the inundation simulations
conducted in this study. Three different rainfall inputs were used to drive the
hydrodynamic model: (1) the original QPESUMS radar rainfall product, (2) an
experimental version of QPESUMS with 10-minute accumulated rainfall

(referred to as QPESUMSI10M), and (3) MAPLE nowcast rainfall data. Each
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precipitation input was independently applied to the 3Di hydrodynamic model to
generate corresponding flood simulations: QPESUMS-based, QPESUMS10M-
based, and MAPLE-based inundation results. This framework allows for a
comparative assessment of the sensitivity of flood modeling outcomes to various
types of rainfall input, encompassing both observed and forecasted data. The
comparison between QPESUMS and QPESUMSI10M enables the evaluation of
the benefits of higher temporal resolution, while the MAPLE nowcast

performance is assessed using the QPESUMS simulation as a benchmark.

Chapter 4. Verification strategies

4.1 Observed flood data

In the past, real-time flood data relied solely on reports from affected
residents and EMIC notification, who typically describe flooding as reaching
knee height, half a wheel high, or an approximate depth. After a flood,
government personnel conduct on-site investigations but often rely on resident
interviews and water marks left behind to estimate flood depth. Fortunately, a
more comprehensive set of observational data is available in selected cases,
including EMIC, flood sensors and satellite data, which improve the validation
of the 3D1 flood model. EMIC data offers single-time measurements of general
water depth in a specific area. Though it lacks temporal continuity, it contributes
to understanding flood conditions at key moments. Meanwhile, the flood sensors

provide continuous time series data at specific locations, capturing detailed water
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depth variations over time. This allows for high temporal resolution validation of
model simulations. Additionally, satellite data offer a general flood extent at
specific time points, providing a spatial overview of inundated areas. This data is
crucial for large-scale validation, complementing the localized but high-

frequency measurements from flood sensors.

By integrating all three data sources: EMIC data, flood sensors, and satellite
imagery, we can maximize the validation of the 3Di model, ensuring that both
temporal and spatial aspects of flooding are accurately represented. This multi-
source approach strengthens confidence in the model’s ability to simulate real-
world flood events, making it a more reliable tool for flood forecasting and risk
assessment. Table 4 displays the data availability in different cases. Red
represents unavailable or lacking data, while green indicates available data. There
is only a limited EMIC record in Dongshan, while there are more consistent
records in Kaohsiung. The flood sensors in Taiwan were installed after 2022,
meaning that historical flood events before this period lack sensor data. Moreover,
Sentinel-1 successfully captured post-flood images within hours of key events on
2018-08-23, 2024-07-24, and 2024-11-12, demonstrating its effectiveness in
flood monitoring. However, there are noticeable data gaps in both EMIC and SAR
records, particularly in events such as 2024-10-03 and 2024-10-24, which could
affect flood assessment in those cases. Overall, Dongshan has fewer data points

compared to Kaohsiung.

4.1.1 EMIC

Emergency Management Information Cloud (EMIC) is a cloud-based
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information integration platform. Developed in collaboration with the Taiwanese
Fire Department, it enhances emergency preparedness and response efficiency by
collecting, analyzing, and sharing diverse emergency data. The system includes
data on various types of disasters, such as floods, earthquakes, and fires.
Specifically, the system includes flood information on water depth, notification
time, locations, descriptions of the severity, and the impacted areas, which are
frequently used to validate flood models in the early stages. However, incomplete

or incorrect information will affect the reliability of the data.

4.1.2 Flood sensor

The point-based flood sensors, where installed roadside, measure water
depth and send the data back to the cloud monitoring system. These sensors
provide data for real-time flood disaster warnings, flood model validation, and
flood extent estimation. Chang et al. (2024) evaluated the accuracy and reliability
of these sensors in detecting flood events and confirmed their value in enhancing
flood modeling and decision support. Their findings support using sensor data as
a reliable reference for real-time applications and post-event model validation in
this study. Currently, over 2300 flood sensors have been installed across Taiwan;
the location is mainly based on elevation, historical events, and flood hotspots.
There are, respectively, 37 and 146 flood sensors in Dongshan and Kaohsiung;

their location is displayed in Figure 10.

4.1.3 SAR

Synthetic Aperture Radar (SAR) signals are mirrored on smooth, open water
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surfaces, resulting in lower backscatter values. Since SAR can penetrate cloud
cover and remain unaffected by adverse weather conditions, it is widely used for
flood detection. However, for SAR to be effectively used, the imaging time must
correspond accurately to the flood event. Significant terrain variations can cause
radar shadowing and strong reflections in urban areas, making it difficult to detect
water bodies properly. Moreover, SAR performs best in detecting areas that are
completely covered by water, while partially flooded regions may be harder to

identify.

SAR data used for flood monitoring comes from Sentinel-1, a C-band radar
satellite operated under the Copernicus Programme by the European Space
Agency (ESA). The Level-1 Ground Range Detected (GRD) product with VV
polarization undergoes pre-processing, which includes applying orbit files,

radiometric calibration, multilooking, speckle reduction, and terrain correction.

Flood detection is addressed as a binary segmentation problem using bi-level
thresholding and a simple histogram analysis, where the goal is to distinguish
dark pixels from brighter ones. Darker pixels typically indicate flooded areas,
while brighter pixels correspond to non-flooded regions. In this study, the
threshold values of -10 dB for Kaohsiung and -15 dB for Dongshan are applied
based on the histogram analysis, as shown in Figure 11. The 5 dB difference
between the two thresholds may be attributed to differences in radar incidence
angles and surface water characteristics, which influence the backscatter intensity

observed in the images.
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4.2 Verification approaches

4.2.1 Continuous Verification

The spatial correlation coefficient (SCC) from continuous verification and
the root mean square error (RMSE) are used to assess the nowcasting system's
performance. The degree of similarity between the forecast and the observation

can be evaluated by the SCC. The SCC can be written as follows:

Y(F—-F)(0-0
SCC = ( )( ) @

VI(F = F)2(0 - 0)2

where F and O denote the total rainfall of the prediction and the observation, and
Fand O are an area average over a two-dimensional precipitation field. SCC
varies between 0 and 1, the latter being the ideal value. The RMSE measures
quantitatively the deviation between the forecast and the observation. The

definition of the RMSE is as follows:

RMSE = ’w 4.2)

Where N is the total number of grid points. RMSE varies between 0 (perfect

match) and +oo.

4.2.2 Categorical verification

Categorical verification is to assess the capability of different levels of flood,

precipitation, or another signal by a binary threshold. It is used to compare the
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3Di model and other observational flood data. Each grids in the model domain
are classified into one of four categories in a confusion matrix (Table 5), which
is based on whether the flood was correctly predicted. The hit (a) represents the
number of cases where both the simulation and observation identify a flood. The
miss (b) occurs when a flood is observed but not simulated. The false alarm (c)
refers to a flood identified by the simulation but not observed. The correct
negative (d) indicates cases where both the simulation and observation agree that
no flood occurred. In this study, the probability of detection (POD), the false-
alarm rate (FAR), the accuracy, the bias, and the critical success index (CSI) of

the categorical verification are formulated as:

a
POD =—— (4.3)
FAR = <
Ta+tc (4.4)
Bi _a+c
las_a+b 4.5)
CSI = a
T a+b+c (4.6)
A _ a+d
ccuracy—a_l_b_l_c_l_d “4.7)

where the range of POD, Accuracy, and CSI are from 0 to 1, with a perfect score
of 1. FAR also has a range of 0 to 1, while the best value is 0. The ratio of the
forecasted event to the observed is known as bias, ranges from 0 to o, and is

perfect in 1. The forecast overstated the events if the bias was bigger than 1.
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4.2.3 Neighborhood method

While binary verification methods provide a general summary of model
performance, more insights can be gained through a scale-selective approach,
which is based on the Fraction Skill Score (FSS), providing additional insights
by considering spatial scale variations in forecast skill. This technique, widely
used in atmospheric sciences for evaluating precipitation forecasts (Roberts and
Lean, 2008), applies a neighborhood-based method to assess how well forecasted
patterns align with observations across different spatial scales. Hooker et al.
(2022) demonstrated that FSS can be effectively applied to flood inundation
verification using SAR data, as it works well with 2-D flood maps where each

grid cell is classified as either flooded or unflooded.

A neighborhood approach based on the Fraction Skill Score (FSS) that
considers uncertainty in spatial scale. Firstly, we interpolated the SAR data from
10m to 1m, the same as the 3Di flood map. Then, assign each grid cell as flooded
(1) or unflooded (0) by the same threshold that has been defined previously in

both SAR and 3Di. The FSS is defined as:

1 N, <N 2
NN, Zi21 2,21 [Ony = o]

FSS, =1-— 4. 8)

1 Ny N
NN, 22 ijl[orzlij + iy
where N, and N, represents the number of interested domain, O is the
observation, F is the model data. The neighborhood is determined in n, a square
form as n x n surrounding the grid cell. For instance, if n=1, only a single grid
is calculated. On the other hand, when n=3, then 9 grids are taken into account.
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FSS of 1 is said to have perfect skill, and 0 means no skill. The spatial scales
n=11,15,19,23,27,31 were selected by considering the different original

resolutions of the model and SAR data.

Chapter 5. Results and discussion

An idealized experiment with three different total rainfall scenarios is first
displayed in section 5.1. Secondly, the forecast skill of MAPLE is examined in
section 5.2. The validation of the 3Di model with multiple flood observational
data is shown in section 5.3. In section 5.4, the discrepancy between QPESUMS
and QPESUMSI10M is evaluated. The results of all real cases with QPESUMS,

QPESUMSI10M, and MAPLE are shown in sections 5.4 and 5.5.

5.1 Idealized experiment

Figure 12 illustrates the 5-hour designed rainfall simulation, inundation area
for 20 mm distributed evenly in 10 minutes, 30 minutes, and 60 minutes in
Dongshan. Three idealized scenarios achieve a flood peak at the moment when
the rain ends, following which the inundation area gradually descends in the next
few hours. The scenario of 20 mm concentrate within 10 minutes has a sharp
increment in flood area, it is the earliest to hit the peak, and also has more
inundation area than others. On the other hand, the other two scenarios show a

slight difference in the peak value, but differ in the time to reach peak.

The bar charts (Figure 13) compare the percentage of flooded and unflooded
areas under two different rainfall distributions: concentrated within 10 minutes

and equally distributed over 60 minutes, the x-axis shows the variation of total
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rainfall. Each grid cell is classified into one of four conditions: flooded in both
rainfall scenarios, flooded only under the 10-minute concentrated rainfall,
flooded only under the 60-minute evenly distributed rainfall, or unflooded in both
scenarios. In both locations, as total precipitation increases, the flooded area
expands while the unflooded area decreases. The pink bars represent areas
flooded under the 10-minute concentrated rainfall but remained unflooded under
the 60-minute evenly distributed rainfall, showing a growth when the total
precipitation increases. In contrast, the charts with values of zero indicate that no
areas were flooded under the 60-minute distribution while remaining unflooded
under the 10-minute scenario. It is evident that when rainfall is concentrated in a
short period, some areas experience flooding, whereas the same total precipitation

distributed over a longer duration does not cause flooding.

Eventually, the root mean square difference (RMSD) among the flood pixels
is displayed in Figure 14, comparing the difference between 20 mm distributed
evenly in 10 minutes, 30 minutes, and 60 minutes in both locations. In both plots,
the RMSD values generally decrease as total rainfall increases from 10 mm to 40
mm. This is because the RMSD calculation only considers grid points where
flooding occurs (water depth > 0.1m). When the total rainfall is low, fewer grid
points meet this criterion, which can amplify differences. As rainfall increases,
more grid points experience flooding, leading to a more stable and representative
comparison, which reduces the observed RMSD differences. This can also
explain the difference between the two places, the RMSD is computed over a
smaller subset of the domain, making localized variations more significant. The
blue line (60 mins vs. 10 mins) consistently shows higher RMSD values than the

orange line (30 mins vs. 10 mins). This suggests that the water depth differences
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are more pronounced when comparing 60-minute rainfall with 10-minute rainfall
than when comparing 30-minute with 10-minute rainfall. In other words, shorter,
more intense rainfall (10 mins) leads to more significant differences in water

depth compared to longer durations (60 mins).

The result emphasizes the importance of rainfall intensity in flooding,
showing that short, intense rain is more likely to overwhelm drainage systems
and lead to flooding. The result indicates that if we only use one-hour-resolution
precipitation data to drive the hydrological forecast, we may underestimate and
delay the forecast because we cannot tell the difference if we only have coarse-

time resolution data.

5.2 Validation of 3Di with observational flood data

5.2.1 Using EMIC and flood sensors as a reference

EMIC data records inundation points during flood events, providing a
valuable reference for model verification. Given the relatively abundant data
available for Kaohsiung, we focus on utilizing EMIC data primarily for this
region. Table 6 presents the number of EMIC records in each case of Dongshan
and Kaohsiung. Figure 15 illustrates the extent of flooding simulated by the 3Di
model and the distribution of EMIC points. In these three events, a significant
concentration of EMIC points is observed in the southern part of the domain,
characterized by lower elevation and dense urbanization, which appears to be at
higher risk of flooding. According to the number and the distribution of EMIC,

the case 0f 2024-07-24 is the most widespread flooding, particularly in the central
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region. The flooding of 2018-08-23 is also evident, particularly in the northern
region. Compared to the previous two events, 2024-10-03 has the least flood area
and EMIC points, and is concentrated only in the south. Table 7 presents the
detection rate of the model simulation compared with EMIC. The event of 2024-
07-24 has the highest agreement (95%), suggesting that most inundation points
can be captured correctly by the 3Di model. The other two cases have about 80%

detection rate, indicating a marginally lower performance.

Based on the model’s predictions and the actual observation, accuracy
quantifies the proper identification and classification of flooded or unflooded
areas. Figure 16 presents the accuracy across different cases. The results indicate
a notable discrepancy in performance between the two locations, with Kaohsiung
outperforming Dongshan. The Kaohsiung cases demonstrate superior
classification performance, with all instances surpassing the 0.5 accuracy
threshold. In contrast, the accuracy of Dongshan exhibits greater variability, with
some cases achieving moderate performance, while the case of 2024-07-24 in
Dongshan records the lowest accuracy, failing to reach 0.5, suggesting limitations
in the model's predictive capability for that event. This is because there are only
37 flood sensors in Dongshan, significantly fewer than the 146 sensors in
Kaohsiung, making the performance more sensitive. However, when working
with unbalanced datasets, when one class hugely outnumbers the others, its
reliability declines. Since there are usually far fewer flooded samples than non-
flooded ones, this problem is especially important to flood categorization; relying
only on the metric may result in an overoptimistic estimation of the classifier's

performance.
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To tackle this limitation, performance diagrams were obtained in the study.
Several forecast accuracy verification metrics are shown in the performance
diagram (Roebber et al. 2009). The upper-right corner of the diagram represents
the best forecast quality, when POD, the successive ratio (1-FAR), BIAS, and CSI
all approach 1. The region of warm color indicates that CSI > 0.6. The dashed
line indicates BIAS, and the forecast is unbiased if the diagonal equals 1. Figure
17 shows the diagram of 4 cases in Dongshan and 2 cases in Kaohsiung, using
flood sensors as reference. Three of the cases in Dongshan had similar success
ratios around 0.4 and a CSI around 0.5, but only 1 had the POD close to 1. They
tended to underestimate due to the small BIAS and POD. On the other hand, in
the other cases, they performed POD above 0.7; however, there was a wide range
in success ratios, about 0.3 to 0.7, indicating an overestimate due to the BIAS

above 1.

5.2.2 Using SAR data as a reference

By the same token, the verification technique was further applied to SAR
data. Figure 18 illustrates the distribution of EMIC points and the SAR detection
in Kaohsiung. It is found that SAR only detects a small flood area in the densely
recorded areas due to the urban area has a high backscatter value, whether there
is water or not. Secondly, the northeast region has plenty of signals, which are
considered to be the radar shadow caused by the terrain. Hence, we only focus on
the domain in the red frame rather than the whole domain. For Dongshan, we
remain to obtain the whole region. Figure 19 shows the accuracy across different

events, using SAR data as a reference. These cases were selected because of their
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availability of SAR data, including 2024-07-24 in both locations, 2024-11-12 in
Dongshan, and the additional case 2018-08-23 in Kaohsiung. Apparently, all
cases with accuracy far surpass the threshold, outperforming the one using flood
sensors. Specifically, the event occurred in the Dongshan exhibit a greater
performance; it is possibly caused by the geographical feature, a wide range of
wetland in the northeastern in the basin. Water-covered areas, such as wetlands
or lakes, are easier to detect by SAR because its signals are reflected on a smooth
water surface. As a result, hits would rise in proportion to the area the SAR
detected. For Kaohsiung, the accuracy of 2018-08-23 is slightly greater than
2024-07-24; a possible reason is that there may be a more severe flood on 2018-
08-23 in the north region, which was our focus area, according to the spatial

distribution of the EMIC report.

Figure 20 illustrates the performance diagram taking the SAR data as
reference. The case of 2018-08-23 stayed close to the top right corner of the
diagram, having the best performance. Except for this, all cases demonstrate a
great success ratio of about 0.8 to 1, meaning that the low false alarm rate.
However, the cases of 2024-07-24 in both locations and 2024-11-12 in Dongshan

have a small POD, from 0.2 to 0.4, showing an underestimation by the model.

The model's performance is statistically assessed using the neighborhood
approach. Figure 21 illustrates the Fractions Skill Score (FSS) across varying
neighborhood sizes (from 11 to 31) for different events and model configurations.
Given that the original SAR dataset has a spatial resolution of 10 meters, the
smallest neighborhood considered is 11 m x 11 m to align more meaningfully

with the input data's native resolution. All curves show a gradual upward trend,
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indicating marginal improvement in FSS as the neighborhood size increases. This
improvement results from larger neighborhoods smoothing out discrepancies
between predicted and observed values, thus improving FSS. Notably, the events
in Dongshan consistently exhibit higher FSS values across all neighborhood sizes,
likely due to the higher proportion of wet areas in the basin, which enhances
spatial agreement. In contrast, events in Kaohsiung demonstrate lower FSS scores,

suggesting less spatial consistency between predictions and observations.

Overall, while the neighborhood method yields some improvement in FSS,
the gains are modest, highlighting the already strong spatial performance of the
model at the native resolution. If two-dimensional observational data with a
resolution closer to the model’s native grid were available, it would further
enhance the reliability and precision of the validation process. Nevertheless, there
are still significant drawbacks to SAR-based flood monitoring, particularly in
urban and vegetated places where complex scattering mechanisms may make it

difficult to accurately identify water regions.

5.3 Comparison between QPESUMS and QPESUMS10M

Figure 22 presents the spatial distribution of average differences between
QPESUMSI0OM accumulated to one hour and QPESUMS for different events,
with red areas indicating higher values in QPESUMS10M and blue areas showing
higher values in QPESUMS. The maps reveal distinct spatial patterns in
precipitation discrepancies, highlighting regional variations in overestimation
and underestimation. In Dongshan, the QPESUMSI0M dataset tends to

underestimate rainfall compared to QPESUMS. However, localized
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overestimations appear in certain events, suggesting variations in short-duration
rainfall capture. In contrast, Kaohsiung exhibits a more consistent overestimation
pattern, where QPESUMS10M shows higher rainfall amounts across larger areas,
particularly in heavy rainfall cases. The event on 2024-07-24, influenced by
Typhoon Gaemi, shows widespread discrepancies with large regions of
overestimation and underestimation, reinforcing the high dispersion seen in the
scatter plots. These spatial differences indicate that QPESUMS10M may struggle
to accurately capture localized convective storms or extreme rainfall, which has

implications for hydrological modeling and flood forecasting.

Figure 23 presents the precipitation results for each hour in the events,
showing density scatter plots comparing the QPESUMS10M sum up to one hour
(x-axis) with the QPESUMS (y-axis). Figure 23 a-d present the area in Dongshan,
Figure 23 e-f present the area in Kaohsiung. The overall distribution of the scatter
plot in each location between events is quite different, but all display a high
density on the line of y = x in smaller rainfall amounts, along with a high
correlation coefficient. In Dongshan, the density of three events (2024-07-24,
2024-10-24, and 2024-11-12) is higher above the y = x line, indicating that
QPESUMSI10M tends to have weaker precipitation than QPESUMS. Conversely,
in the other events, the QPESUMS10M has more intense precipitation than the
QPESUMS, especially in Kaohsiung. This suggests that in Dongshan, short-
duration rainfall is often underestimated by QPESUMS10M, while in Kaohsiung,
QPESUMSI0M overestimates precipitation, possibly due to convective storm
activity. Additionally, on 2024-07-24, Typhoon Gaemi led to significant rainfall
in both regions, causing a greater dispersion of grid points and a regression line

that deviates more from y = x compared to other events. The high variability
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observed indicates that high-intensity convective bursts that are not evenly
distributed within an hour may introduce biases in hydrological and flood

modeling.

Although the overall differences between QPESUMS and QPESUMS10M
may not appear extreme, their impact on flood modeling is significant. Figure 24
and Figure 25 reveal that when QPESUMS10M and QPESUMS are used as input
for the 3Di flood model, the simulated inundation area of QPESUMSI10M is
consistently larger, and the flood peaks occur earlier across all events and both
locations. This suggests that the finer temporal resolution allows for the earlier
detection of flooding, which is particularly important for early warning systems
and disaster preparedness. Furthermore, the relationship between rainfall
intensity and flood area growth indicates that QPESUMS10M's higher resolution
enables a more responsive simulation of hydrological processes. When rainfall
intensity is higher, the difference between the flood areas produced by the two
datasets is more pronounced. This suggests that high-resolution precipitation data
can better capture short-duration, high-intensity rainfall events, leading to more
realistic flood forecasts. Given these findings, further analysis is necessary to

quantify the impact of different precipitation inputs on hydrological simulations.

5.4 Evaluation of MAPLE's forecast performance

The forecast skill of MAPLE can be evaluated by comparing the predicted
precipitation field with QPESUMS. The Z-R relationship in (3. 6) converts the
predicted precipitation field from reflectivity(Z). To better assess the performance

of the data used, we validated the rainfall field based on the strategy applied in
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the 3Di model, specifically focusing on the rainfall over land. The heat map in
Figure 26 presents SCC values of one-hour accumulated precipitation between
the three nowcast strategies and QPESUMS across four events. SCC values above
0.5 indicate predictive ability. In all cases, MAPLE10mins consistently exhibits
more blue regions and remains relatively stable throughout the day. In contrast,
MAPLE30mins is sometimes close to MAPLE10mins but fluctuates more.
However, MAPLE60mins displays more red regions, indicating the lower SCC

and the weakest performance.

RMSE was calculated to quantitatively assess the errors of the 3 strategies
of nowcast. As shown in Figure 27, MAPLE10mins consistently has the lowest
RMSE, while MAPLE30mins follows closely behind. MAPLE60mins has the
highest RMSE in all cases, showing that longer durations lead to increased errors.
In the cases of 2024-07-24 and 2024-10-03, they both showed significant
fluctuation, with peaks reaching 15 mm and 10 mm at certain hours, respectively.
These are likely due to increased rainfall caused by the landfall of the tropical
cyclones in these cases. On the contrary, in 2024-10-24 and 2024-11-12, RMSE
are relatively lower, with less variability over time. Overall, although the value
of SCC and RMSE is case-dependent, the result shows that MAPLE10mins is the

most reliable forecast across all cases.

5.5 Hydrological value of MAPLE forecasts

Figure 28 illustrates the inundation area across events, comparing the
performance of various precipitation inputs: QPESUMS, QPESUMS10M, and

MAPLE at different input intervals (10, 30, and 60 minutes). Figure 28 a-d are in
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Dongshan, Figure 28 e and f are in Kaohsiung. Figure 28 a illustrates the temporal
evolution of the flood inundation area, beginning from 04:00 UTC on July 24,
2024. A clear divergence in flood extent is observed, particularly during the peak
period between 09:00 and 12:00, where QPESUMSIOM shows the highest
inundation area, peaking above 20 km?, QPESUMS displays a slightly lower peak
(around 17 km?), while the MAPLE-based forecasts show relatively consistent
results with a peak near 15 km?, regardless of the temporal resolution. The
MAPLE outputs remain more stable across the event, reflecting potentially more
smoothed rainfall estimates. MAPLE forecasts show lower flood extents overall,
indicating a tendency to underestimate inundation compared to QPESUMS and
QPESUMSI10M. In Figure 29, the reflectivity fields are similar, a strong rainband
of a tropical cyclone is moving in, however, there are significant differences in
the rainfall field comparing the result of Z-R conversion and QPESUMS10M. In
addition, MAPLE with a 60-minute update interval appears less smooth than
10mins and 30mins, showing more fluctuation across the timeline. While the
timing of the peak rainfall is similar across all methods, the recession (drainage)
rate differs, with MAPLE showing a distinct pattern from QPESUMS, possibly

due to differences in rainfall accumulation.

Figure 28b illustrates the flood inundation area starting from 08:00 UTC on
October 3, and shows a comparatively smaller event than in Figure 28a. The
results indicate that QPESUMS10M and QPESUMS forecast larger inundation
areas, peaking around 15:00—16:00, with maximum extents of approximately 10
km? and 8 km?, respectively. In contrast, all MAPLE forecasts (10, 30, and 60mins)
remained under 2 km? throughout the simulation period. This underestimation is

primarily attributed to forecast error. A detailed comparison of the reflectivity
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fields reveals a key discrepancy (Figure 30 and Figure 31): in the observed data,
a convective system develops directly over the Dongshan basin, while in the
forecast fields, this system is entirely absent. This highlights a fundamental
limitation of nowcasting systems, difficulty in detecting and forecasting new,
rapidly developing convective cells, particularly when they initiate locally and

are not connected to pre-existing echoes.

Figure 28c displays the flood inundation area starting from 04:00 UTC on
October 24. The QPESUMS data reveals two distinct peaks in inundation extent.
MAPLE products, particularly MAPLE10mins, accurately capture the timing and
magnitude of the first peak, demonstrating their capability in reflecting the initial
rainfall event. However, significant discrepancies emerge during the second peak.
All MAPLE variants, especially MAPLE60mins, exhibit substantial
overestimations of the inundated area compared to QPESUMS. To further
investigate this divergence, a comparison between forecast fields and observed
rainfall was conducted (Figure 32). Observational data indicate the presence of a
strong rainband, which slightly weakened in the subsequent hour. In contrast,
MAPLE showed the strong rainband moving directly into the basin, which did
not occur in the observation. This caused a sharp increase in the simulated flood
area and led to an overestimation of the flooding extent. Among the MAPLE
products, since MAPLE60mins assumes a constant rainfall rate over one hour
based on a single nowcast, it tends to smooth over temporal variability and
exaggerate the impact of forecasted intense rainbands. In contrast,
MAPLE10mins, despite relying on the same hourly nowcast, introduces rainfall
into the hydrological model at a finer temporal resolution, which results in

simulations closer to those based on QPESUMS10M. This emphasizes that not
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only the forecast accuracy but also the temporal resolution of rainfall input plays

a crucial role in flood simulation outcomes.

Figure 28d presents the simulated flood area starting at 04:00 UTC on
November 12, 2024. In this case, both QPESUMS and QPESUMSI10M show a
rapid rise in inundation extent during the early hours, peaking around 08:00—
09:00 UTC. The MAPLE-based simulations generally follow the same trend, with
MAPLE10mins closely capturing the timing and magnitude of the peak flood area,
though with some underestimation during the initial rapid increase. Interestingly,
all MAPLE simulations show a smoother flood area evolution compared to
QPESUMS, especially during the rising limb, suggesting limitations of position
errors of the rainband or Z-R conversion. Figure 33 displays the difference
between the forecast and the observation. Despite using the same forecast inputs,
the difference in rainfall input frequency plays a key role. MAPLE60mins tends
to produce the smoothest and most delayed flood response, while MAPLE10mins
shows better agreement with QPESUMS10M, reflecting the benefit of higher
temporal resolution when simulating rapid flood events. However, all MAPLE
simulations exhibit a similar rate of decrease during the recession limb, closely
matching the trend observed in the two QPE-based simulations, indicating that

the recession phase was well captured in the forecasts.

The inundation areas for the Kaohsiung cases on 2024-07-24 and 2024-10-
03 are shown in Figure 28 e and f, respectively. The shape of the flood area curves
across all datasets is generally consistent, indicating that the nowcasting approach
is able to capture the overall flood trend reasonably well. However, MAPLE

consistently underestimates the inundation extent compared to QPESUMS10M

37



and QPESUMS, particularly in the more intense event on 2024-07-24. This
suggests that while the nowcasts reflect the temporal pattern of rainfall, their
intensity, especially during high-rainfall events, may be insufficient to accurately

reproduce peak flood conditions.

Overall, the results demonstrate that MAPLE nowecasts, despite certain
limitations in capturing localized convective developments, still offer meaningful
value in hydrological simulations. Particularly, the consistency in trend
reproduction and the reasonable performance in capturing peak timing, especially
under the 10-minute input scheme, suggest that MAPLE can effectively support
flood forecasting when high-frequency input is applied. While it tends to
underestimate flood extent in intense events, its smoother rainfall estimates
reduce noise and yield stable flood area simulations, which may be advantageous
in operational forecasting. These findings indicate that MAPLE can contribute
valuable input to flood models. In addition, the results indicate that smaller basins
like Dongshan are more sensitive to the accuracy of precipitation inputs, where
errors in nowcast rainfall fields more directly translate into discrepancies in flood

extent simulations.

Chapter 6. Conclusion and future work

6.1 Conclusion

In this study, we investigate the ability of high temporal resolution
precipitation data to improve flood simulation accuracy in 6 cases. Two QPE

products and the forecast by MAPLE are assessed and fed into the 3Di model.
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Furthermore, the flood model was validated by the observational flood data with
improved data availability from these events. The forecast results of MAPLE are
evaluated by continuous verification with SCC and RMSE, categorical
verification with accuracy, performance diagram, and neighborhood method. The

following is a summary of the study's findings:

1. To understand the impact of rainfall intensity distribution on flooding, this
study examines different rainfall durations with equal total precipitation. The
results show that short-duration, high-intensity rainfall leads to faster and
more extensive flooding compared to longer-duration events. This difference
in flood response highlights how rainfall intensity, not just total amount,
influences flood risk. The findings suggest that using coarse temporal
resolution in hydrological modeling may underestimate flood potential and
delay warnings, underscoring the need for high-resolution precipitation

input for accurate forecasting and flood simulation.

2. To validate the 3Di flood model, this study uses EMIC observational flood
points as reference, focusing on Kaohsiung due to its richer data. The results
show a strong agreement between simulated and observed inundation for the
2024-07-24 event, with a 95% detection rate. Other cases also reach about
80%, confirming reasonable model performance. However, classification
accuracy varies by region, with Kaohsiung consistently outperforming
Dongshan. In Dongshan, low accuracy in some cases highlights limitations
in predicting complex flood patterns. Due to the imbalance in flood and non-

flood samples, performance diagrams were applied for more reliable
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verification. The diagrams reveal a mix of underestimation and
overestimation depending on the event, emphasizing the need for careful

evaluation when applying flood simulation in diverse terrains.

SAR data provides another validation source, offering full spatial coverage.
When compared with 3Di outputs, SAR-based accuracy is generally higher
than that of flood sensor comparisons, especially in Dongshan, where
wetlands enhance water detection. However, SAR data is less reliable in
urban areas or mountainous regions due to radar shadow and high
backscatter. Despite these limitations, SAR-based validations consistently
show high success ratios and low false alarm rates, although low POD in
some events suggests model underestimation in capturing flooded areas.

These results highlight SAR’s value in verifying model performance.

The neighborhood verification method, using FSS, was applied to assess
spatial consistency between 3Di simulations and SAR observations. Results
show that increasing the neighborhood size improves FSS values, indicating
better spatial agreement as local differences are smoothed. Events in
Dongshan show higher FSS across all scales, likely due to the larger wetland
coverage, while Kaohsiung events exhibit lower scores, suggesting more
localized discrepancies. Overall, the method confirms acceptable spatial
skill at native resolution and suggests potential benefits from higher-
resolution validation datasets in the future. Nonetheless, SAR limitations in
complex urban or vegetated environments remain a key challenge for

accurate flood mapping.

To evaluate how the temporal resolution of precipitation data affects flood
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modeling, this study compares QPESUMSIOM and hourly QPESUMS
datasets. Spatial analysis reveals discrepancies: QPESUMSI10M often
underestimates rainfall in Dongshan, while in Kaohsiung, it tends to
overestimate. Scatter plots further confirm these patterns, especially under
typhoon-influenced rainfall, where high variability is observed. Although
overall precipitation differences between the two datasets are not extreme,
flood simulations using QPESUMS10M consistently produce earlier and
larger inundation areas. This indicates that higher temporal resolution
enables better detection of short-term, intense rainfall and its hydrological
impact, emphasizing its value in accurate flood forecasting and early

warning systems.

To evaluate the performance of MAPLE's nowcasting system, we compared
predicted rainfall fields which converted using a Z-R relationship with
QPESUMS, and focusing on land-based precipitation. SCC analysis shows
that MAPLE10mins consistently provides higher predictive skill across all
events, with more time exceeding the SCC threshold of 0.5. In contrast,
MAPLE60mins exhibits significantly weaker performance, with more low-
correlation regions. In terms of error magnitude, RMSE analysis further
supports this pattern, MAPLE10mins maintains the lowest errors across
events, while MAPLE60Omins shows the highest. Overall, the results suggest

that MAPLE10mins offers more reliable precipitation predictions in Taiwan.

The performance of various precipitation inputs on flood simulation was
assessed by comparing inundation areas generated by the 3Di model across

different events. Simulation results show that MAPLE generally
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underestimates flood extent, especially during intense rainfall events.
However, the MAPLE10mins yields results closest to observations,
effectively capturing flood trends and peak timing, highlighting the

importance of high-frequency rainfall inputs.

8. Compared to larger basins, smaller basins like Dongshan are more sensitive
to precipitation accuracy, where even minor forecast errors in rainfall fields
can directly affect flood extent, emphasizing the need for precise spatial and
temporal resolution. Although MAPLE struggles to capture localized
convective systems and introduces some errors, its stable and smoothed
rainfall input still offers value in flood simulations, particularly for

operational forecasting scenarios.

Overall, the above results highlight the critical role of high-resolution
precipitation data for accurate flood modeling and early warning. Results show
that rainfall intensity distribution, temporal resolution, and nowcast accuracy
significantly influence flood extent and timing. Validation using multiple data
sources confirms the reliability of the 3Di model, though performance varies by
region and data source. Among the strategies of QPE and nowcasts, high temporal
resolution precipitation data consistently demonstrate higher and earlier

inundation peaks in flood simulation, particularly in smaller, sensitive basins.

6.2 Future work

To enhance the accuracy and applicability of flood simulation and
forecasting, several directions can be explored in future research. First,

incorporating more diverse and higher-quality datasets can improve the model's
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ability to capture real-world conditions. Extending the initial simulation period
and accounting for soil saturation levels can help better represent the initial
hydrological state of the system. Additionally, as tidal effects influence the
drainage rate, integrating tidal data into the model could further refine simulation

accuracy, especially in coastal or estuarine areas.

This study primarily focuses on typhoon-related events and northeasterly
winds. Future work can expand the range of test cases to include different weather
patterns, such as Mei-yu fronts or other frontal systems. Furthermore, applying
the methodology across various geographical regions, including urban and rural
areas of different scales, can help evaluate the generalizability of the model and
assess the added value of high temporal resolution data under different

environmental settings.

In addition to nowcasting systems like MAPLE, future studies may explore
the performance of various numerical weather prediction (NWP) models, such as
WRE, in simulating precipitation events at different temporal and spatial scales.
Comparing deterministic and ensemble forecast outputs can help evaluate their

suitability as inputs for flood modeling under diverse meteorological conditions.

Moreover, while this study primarily focuses on short-term rainfall
forecasting and nowcasting applications, extending the forecasting horizon to
medium- or long-range periods (e.g., 1-5 days) may offer valuable insights for
early warning and preparedness. Such efforts would allow flood risk assessments
under more uncertain but proactive scenarios, contributing to the development of

an integrated, multi-scale flood forecasting system.
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Table

Table 1. The list of selected events.

NAME START SIMULATION  LOCATION
TIME HOURS
Casel Typhoon Gaemi  2024/07/24 24 Dongshan
04UTC
Case2 Typhoon Krathon 2024/10/03 12 Dongshan
08UTC
Case3 Typhoon Trami 2024/10/24 24 Dongshan
and Northeasterly 04UTC
Case4 Northeasterly and 2024/11/12 24 Dongshan
Typhoon Toraji 04UTC
Case5 Typhoon Gaemi  2024/07/24 24 Kaohsiung
12UTC
Case6 Typhoon Krathon 2024/10/03 12 Kaohsiung
00UTC
Table 2. The parameters setting of 3Di.
Model Dongshan Kaohsiung
Area (km?) 112.728 939.473
DEM (m) 1 1
Simulation time step 10s 10s
Output time step 300s 300s
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Table 3. The VET setting of MAPLE

VET parameter setting
Number of maps 3

Time difference between each map 20

Amount of smoothing 3x3
Reflectivity threshold 5

Number of scaling guesses 5

Vector density of scaling guesses 144x144
Relative weightings for fand y 0.5 and 1000

Table 4. The data availability in different cases.

EMIC

Flood
sensor

~ N
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Table 5 Four categories of the confusion matrix

Observed

Forecast

O = Threshold

O < Threshold

F > Threshold

Hit(a)

False alarm(c)

F < Threshold

Miss(b)

Correct negative(d)

Table 6. The number of EMIC in the selected events.

Events EMIC records
2024-07-24, Dongshan 7

2024-10-03, Dongshan 26
2024-10-24, Dongshan 0

2024-11-12, Dongshan 0
2018-08-23, Kaohsiung 686
2024-07-24, Kaohsiung 1183
2024-10-03, Kaohsiung 294

Table 7. The number of detections and detection rate by 3Di.

Events EMIC records The number of | Detection rate
detections

2018-08-23, 686 549 80%
Kaohsiung

2024-07-24, 1183 1129 95%
Kaohsiung

2024-10-03, 294 235 80%
Kaohsiung
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Figure 1. Accumulated rainfall during flood simulation time in six cases.
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Water level
Water Depth

Figure 2. An illustration of a computational cell using quad-tree refinements and a
water depth defined on the sub-grid. (adopted from 3Di documentation).
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Figure 3. Basic information of Dongshan used in the 3Di model. (a) The DEM. (b)
roughness map. (c) Infiltration map.
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Figure 5. The positions of radars in Taiwan. Red dots are C-band radars, blue

dots are S-band radars.
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Rainfall in Northeastern Taiwan
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Figure 6. The distribution of rainfall intensity during significant rainfall

events in (a) Northeastern and (b) Southwestern Taiwan.
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Figure 7. The calculated 9 area of Figure 6
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Figure 8. Experiment setting in this study.
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Figure 10. The locations of flood sensors in (a) Dongshan and
(b) Kaohsiung.
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Figure 11. Histogram analysis based on SAR images in (a) northeastern and

(b) southwestern Taiwan.
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Flood area of designed rainfall in Dongshan
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Figure 12. The flood area of the 3 scenarios with a total precipitation 20 mm.
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Water depth difference of varying total precipitation
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Figure 14. Water depth difference of varying precipitation
amount. (a) Dongshan. (b) Kaohsiung.
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Figure 15. The distribution of EMIC and the maximum water depth simulated
by 3Di in the events. (a) 2018-08-23 (b) 2024-07-24 (c) 2024-10-03
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Figure 16. Accuracy compared with flood sensors.
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Figure 17. Performance diagram, flood sensors used as reference.
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Figure 18. Water area detected by SAR and the distribution of EMIC.
Light-green circle is effected by terrain. Yellow circle is the main urban
area. Pink circle shows a good match of SAR detection and EMIC,

therefore, Red box shows the calculated regions of verification.

68



Accuracy

10
B Dongshan
B Kaohsiung
08 4
= 0.6
[
e
=
=}
£ 04+
02 4
00 -
20240724 20241112 20180823 20240724
Events

Figure 19. Accuracy compared with SAR images.
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Figure 20. Performance diagram, SAR data used as reference.
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Figure 21. FSS score with neighborhood size from 11 to 31.
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Flood area in 20240724, Dongshan
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Figure 24. The flood area using QPESUMS10M and QPESUMS. The gray
bar is the maximum 10-minute rainfall in the basin.
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Figure 25. The flood area using QPESUMS10M and
QPESUMS. The gray bar is the maximum 10 minute rainfall
in the basin.
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Figure 26. Heat map of SCC evolution.
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Figure 27. RMSE evolution.
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Figure 28. The inundation area across events.
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Figure 29. Observed and MAPLE forecast reflectivity, and convert to rainfall field
by the Z-R relationship in the event 2024-07-24.
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Figure 30. Observed and MAPLE forecast reflectivity, and convert to rainfall
field by the Z-R relationship in the event 2024-10-03.
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Figure 31. Observed and MAPLE forecast reflectivity, and convert to rainfall
field by the Z-R relationship in the event 2024-10-03.
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Figure 32. Observed and MAPLE forecast reflectivity in the event 2024-10-24.
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Figure 33. The difference between MAPLE10mins and QPESUMS10M.
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