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摘要 

台灣擁有豐沛的降雨，但也有致災的可能性，因此高解析度淹水模擬及預報對防災

及水資源管理是重要的，但淹水模擬及預報的準確性有很多誤差來源，包括地形資料的

準確度、模型的設定、以及降雨資料的不確定性。 

本研究針對降雨資料的不確定性，將不同類型及時間解析度的降雨資料應用至 3Di 

水動力模式，包括理想情境下的降雨、定量降水估計、和 MAPLE (McGill Algorithm for 

Precipitation nowcasting using Lagrangian Extrapolation)的即時預報結果，以此檢視 3Di 模

式對降雨資料的敏感度，並選擇宜蘭的冬山河流域及高雄市區，模擬 2024 年發生的多

個颱風、東北季風造成的淹水事件，以此檢視不同集水區和降雨型態的差異性。過去臺

灣用在水文分析的降雨資料大多都是一小時一筆累積降水資料，但當強降雨集中在更短

時間例如半小時或十分鐘時，根據實驗結果，可能造成淹水情形更加嚴重，因此更高時

間解析度的降雨資料是有存在的必要性。在即時預報方面，MAPLE 的即時預報在每小

時滾動更新的條件下，淹水歷線趨勢上和使用定量降水估計的模擬相似，但整體淹水面

積低估。 

此外，淹水模式時常因為真實資料不足或零散而難以驗證，但 2024 年的凱米颱風

在台灣造成多處淹水而有相對充足的資料，因此本研究利用淹水感測器、衛星資料及

Emergency Management Information Cloud (EMIC) 作為模式驗證的參考，也顯示了不同

資料的優缺點及結果上的差異。根據校驗結果，3Di 水動力模式的模擬結果和淹水感測

器相比，準確度在不同事件下分布在 0.6 至 0.8，和衛星資料相比，準確度分布在 0.75 和

0.95 之間。 
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Abstract 

The accuracy of flood simulations depends on multiple factors, with precipitation data 

uncertainty being a key influence. Therefore, selecting an appropriate combination of 

meteorological data and flood models is essential for effective flood management. This study 

presents a framework that emphasizes the importance of high-temporal-resolution precipitation 

data by integrating five types of precipitation datasets: designed rainfall, two quantitative 

precipitation estimation (QPE) products, and the nowcast system MAPLE (McGill Algorithm 

for Precipitation Nowcasting using Lagrangian Extrapolation). These datasets were used as 

inputs for the hydrodynamic model 3Di. 

An idealized experiment revealed that flooding may be underestimated when heavy 

rainfall occurs within a short duration, particularly less than one hour, if only hourly rainfall 

data is used, underscoring the necessity of finer temporal resolution in flood forecasting. Six 

heavy rainfall events from 2024 in northeastern and southwestern Taiwan were analyzed, 

leveraging improved data availability from these events to validate the flood model. The results 

demonstrate that higher temporal resolution enables earlier flood detection, which is critical for 

early warning systems. Additionally, when rainfall intensity increases, the discrepancy between 

flood extents generated by different datasets becomes more pronounced. Furthermore, MAPLE 

provides reliable short-term forecasts within one hour, though any forecast errors may be 

amplified when incorporated into the flood model. These findings highlight the importance of 

precise precipitation data in flood simulations and the potential challenges associated with 

forecast uncertainty.  
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Chapter 1. Introduction 

In Taiwan, the occurrence of extreme rainfall, precipitated by tropical 

cyclones, frequently results in disastrous flooding. This phenomenon has been 

associated with significant societal and economic consequences, including 

injuries, property damage, and economic losses. The topography of Taiwan is 

characterised by a high degree of slope, a high population density, and rapid 

urbanisation. These factors combine to amplify the risk of flooding, particularly 

in low-elevation and coastal regions. Flood management has become increasingly 

difficult in recent years due to climate change, which has increased both the 

severity and frequency of extreme weather occurrences. (Zwiers et al. 2013; 

Trenberth 2010; Lawrence et al. 2013). To mitigate the impacts of flooding, it is 

crucial to have accurate weather forecasts, real-time hydrological monitoring, and 

efficient flood management strategies. 

 Flood forecasting faces many sources of uncertainty, including rainfall input, 

model structure, model parameters, and terrain characteristics (Papaioannou et al. 

2017). Rainfall input serves as the internal forcing for flood models. However, 

uncertainties in rainfall input remain a major challenge, directly influencing the 

accuracy of flood forecasts. With advancements in computational techniques and 

observational technology, numerical weather prediction (NWP) systems have 

significantly improved in recent years, providing high-resolution rainfall 

forecasts for flood modeling (Cloke and Pappenberger 2009; Alfieri et al. 2012). 

However, initial forecasts from numerical weather models are often unreliable 

due to spin-up issues (Saadi et al. 2023; Hsu, 2023).  
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To overcome this limitation, quantitative precipitation nowcasts (QPN) 

provide short-term rainfall predictions with high temporal resolution. One widely 

used technique is radar extrapolation, which relies on a motion field derived from 

previous radar echoes. This motion field is then applied using advection or other 

schemes to generate forecasts. The McGill Algorithm for Precipitation 

nowcasting by Lagrangian Extrapolation (MAPLE) system is one of the QPN 

approaches. Previous studies have demonstrated MAPLE’s capability in 

nowcasting precipitation across different regions, including North America, 

Korea, and Europe (Germann and Zawadzki, 2002; Turner et al., 2004; Germann 

et al., 2006; Bellon et al., 2010; Lee et al., 2010; Mandapaka et al., 2011). In 

Taiwan, MAPLE was first applied by Pan et al. (2018) to evaluate its performance 

during typhoon events and a Mei-Yu event. Their results demonstrated that 

MAPLE can provide an effective forecast duration of approximately 2 hours. A 

subsequent study (Chung and Yao 2019) analyzed 16 typhoon cases, providing a 

statistical assessment of MAPLE’s performance at different stages of typhoon 

progression. 

Beyond rainfall accuracy, the spatiotemporal variability of precipitation also 

introduces considerable uncertainty in flood estimation, particularly in small 

urban basins. These catchments typically exhibit a rapid hydrological response 

and are highly sensitive to the distribution of rainfall due to the prevalence of 

impervious surfaces, such as roads and buildings, which promote rapid runoff and 

limit infiltration (Emmanuel et al. 2012; Ochoa-Rodriguez et al. 2015). These 

conditions underscore the need for flood forecasting strategies that account for 

both the accuracy of rainfall and the localized surface characteristics. 
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Terrain characteristics further contribute to modeling uncertainty by 

influencing how surface water is routed and stored. Accurate terrain 

representation is especially crucial in hydrodynamic simulations. Lai (2022), for 

example, compared the performance of two hydrodynamic models, 3Di and 

HEC-RAS, under different return period scenarios in Taiwan. The study found 

that 3Di provided more realistic and detailed inundation maps, benefiting from 

quadtree and subgrid techniques that preserve terrain detail while reducing 

computational load. Similarly, Hsu et al. (2016) demonstrated that the resolution 

of digital elevation models (DEMs) can significantly affect model performance. 

Coarser DEMs often oversimplify topographic features, which may distort 

hydraulic gradients and result in unrealistic flood extents. 

Verifying hydrodynamic models is challenging due to limited observational 

data (Wing et al., 2017). Traditionally, flood model validation relied on surveys 

and eyewitness reports. However, in recent years, IoT-based flood sensors in 

Taiwan have provided quantitative measurements of water depth on roads and 

low-lying areas. Meanwhile, Satellite-based Synthetic Aperture Radar (SAR) 

sensors are also widely recognized for their effectiveness in flood detection by 

distinguishing water bodies through their low scatter values. SAR offers the 

advantage of penetrating cloud cover and providing flood extent at a two-

dimensional scale, and it has been successfully used to calibrate hydrodynamic 

forecast models (Schumann et al., 2009; Grimaldi et al., 2016). However, 

meteorological and surface features can affect SAR backscatter characteristics, 

leading to false detection. For example, radar shadow and surface covered by 

buildings and vegetation may obscure flooded areas (Grimaldi et al. 2016). Many 

previous studies have relied on a single type of flood observation data, limiting 
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the ability to comprehensively assess flood conditions.  

Flood simulation accuracy is highly sensitive to the temporal resolution and 

distribution of rainfall input. Traditional models often assume uniform rainfall 

distribution, which may not accurately represent short-duration, high-intensity 

events that drive urban flooding. This study aims to investigate the impacts of 

rainfall time resolution on flood simulation using the 3Di hydrodynamic model 

and to assess the value of different rainfall input types, including nowcasting and 

QPE products, in improving prediction accuracy and early warning capabilities. 

Idealized rainfall scenarios were first designed to test the model's sensitivity: 

both with the same one-hour total rainfall but different temporal distributions, one 

evenly spread and one concentrated in 10 minutes, and one in 30 minutes. The 

results show that the scenario which the rainfall concentrated in 10 minutes has 

higher inundation area, indicating the 3Di model is capable of distinguishing 

between different rainfall distributions, confirming the critical role of rainfall 

intensity. In real cases, the 3Di model was applied to six real flood events in 

Taiwan, integrating high-resolution (1-meter) DEMs to capture terrain features 

and guide overland flow paths with Rainfall inputs included two quantitative 

precipitation estimation (QPE) products and MAPLE nowcasting data, indicating 

the higher temporal resolution of QPE can detect flood earlier. Moreover, 

MAPLE nowcasting capture overall trend in Kaohsiung, while the forecast error, 

and the higher-sensitivity of smaller basin lead to more discrepancy in Dongshan. 

These findings highlight the importance of fine-scale rainfall data in operational 

flood forecasting and early warning systems. 

The Model validation employed a combination of witness reports, flood 
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sensors, and SAR (Synthetic Aperture Radar) imagery, offering both point-based 

and spatial assessments. In urban areas like Kaohsiung, where observational data 

are more abundant, the model performed reliably, and SAR imagery further 

enhanced spatial validation.  

This study is organized as follows. Chapter 2 presents the study area and 

selected cases. Chapter 3 introduces the hydrological models, QPE data, 

nowcasting system, and the evaluation framework. Chapter 4 introduces the 

verification data and approaches. Chapter 5 discusses the results of the idealized 

test, nowcast performance, hydrodynamic model verification, and the 

hydrological performance of varying precipitation input. Conclusion and future 

work are covered in Chapter 6.  
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Chapter 2. Study area and cases overview 

2.1 Study area 

Two different characteristic regions are selected for the study, one is the 

Dongshan River basin, located in Yilan, northeastern Taiwan. The area is 

112.718𝑘𝑚2, where the average annual precipitation is about 3000 mm. In Yilan 

County, rainfall is concentrated during the autumn and winter months from 

August to December. Typhoons and the northeast monsoon often bring heavy 

rain. Dongshan Township, which is mostly flat, is traversed by the Dongshan 

River and Luodong River, making it at risk of river flooding and inundation. In 

the southwestern part of the first study area is relatively elevated, while the 

northeastern area is flatter. As a result, during heavy rain or typhoons, flooding is 

more likely to occur in the northeastern region. If this occurs with high tide, it can 

further hinder the drainage of floodwaters, making it difficult for flooding to 

subside.  

Another is located in southwestern Taiwan. Unlike the Dongshan River 

basin, the selected region covers some rivers, including the Erren River, 

Agongdian River, Dianbao River, Cianjhen River, Houjin Creek, Love River, and 

Yanshuei River, as well as the main city in southern Taiwan, Kaohsiung. This 

region is hereafter referred to as the Kaohsiung basin. The area of the Kaohsiung 

basin is 939.473 km², and the average annual precipitation is about 2000 mm, 

most of which is concentrated in the summer and autumn. The long-duration 

flood is typically caused by a tropical cyclone and the southwesterly flow 
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associated with it. The eastern boundary of the Kaohsiung basin is bordered by 

the Central Mountain Range, and the rivers generally flow westward toward the 

Taiwan Strait. This topographic configuration results in short and steep rivers, 

which respond rapidly to intense rainfall, increasing the risk of flash flooding and 

overwhelming the urban drainage system during extreme weather events. 

2.2 cases overview 

Six heavy rainfall events in 2024 and one additional event in 2018 are 

selected in the study (Table 1). The accumulated precipitation during the flood 

simulation is shown in Figure 1. The outer circulation of Typhoon Gaemi began 

affecting Taiwan on the morning of July 23, with the eastern region experiencing 

the initial impact. The typhoon approached its closest point to Taiwan on July 24 

and 25, bringing intense rainfall primarily to northeastern Taiwan. In addition to 

making direct landfall, Typhoon Gaemi lingered along the coast of Hualien, 

resulting in prolonged and heavy rainfall across multiple regions before 

eventually making landfall in Hualien. As the typhoon moved northwest away 

from Taiwan, it was accompanied by a strong southwesterly flow, which 

triggered further heavy rainfall in southern Taiwan. Due to the spatial and 

temporal variation in rainfall intensity, the simulation start times differ for each 

basin: for the Dongshan Basin, the simulation begins at 04:00 UTC on July 24, 

2024, while for the Kaohsiung Basin, it begins at 12:00 UTC on the same day. 

Typhoon Krathon affected Taiwan from October 2 to October 4. Due to its 

slow movement, Typhoon Krathon allowed continuous moisture convergence 

over the island, enhancing rainfall accumulation in affected regions. On October 



8 

 

3, Typhoon Krathon made landfall in Kaohsiung, causing heavy rainfall and 

severe flooding in southern Taiwan. In addition to the impact on the south, the 

typhoon's circulation interacted with prevailing northeasterly winds, resulting in 

orographic lifting and significant rainfall over northeastern Taiwan, including the 

Dongshan Basin. To reflect the timing of rainfall onset, different simulation start 

times were assigned for each basin. For the Dongshan Basin, the simulation 

begins at 08:00 UTC on October 3, 2024, while for the Kaohsiung Basin, it begins 

at 00:00 UTC on the same day, aligning with the earlier arrival of heavy rainfall 

in southern Taiwan. 

Typhoon Trami and Typhoon Toraji did not make landfall in Taiwan. 

Instead, as they passed through the Bashi Channel and the Philippines, they 

enhanced northeasterly winds, leading to heavy rainfall and resulting localize 

flooding in the Dongshan Basin. Due to the timing of rainfall, the simulation for 

the Dongshan Basin begins at 04:00 UTC on the day when heavy rainfall started 

to intensify under the influence of each respective typhoon, October 24 and 

November 12, respectively. Since Kaohsiung was not significantly affected by 

rainfall during these events, no simulations were conducted for the Kaohsiung 

Basin for these cases.  

An additional event that occurred in 2018 was used solely for calibration to 

enhance the reliability of the model. In 2018, Taiwan was affected by a low 

pressure in the south, and a tropical low pressure passed through the western coast 

of Taiwan on August 23~24, and a low pressure system and southwesterly airflow 

from August 25 to August 28, bringing more than 1,000 millimeters of rainfall to 

the southwestern region, which resulted in a total of $871.99 million in 
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agricultural losses and extensive and long-term inundation.  

Chapter 3. Data and Methodology 

3.1 3Di Hydrodynamic Model 

3Di hydrodynamic model (Stelling et al., 2012) is a new simulation software 

system developed in the Netherlands by Stelling Hydraulics, Deltares, TU Delft, 

and Nelen & Schuurmans, consisting of a computational core, an application 

programming interface (API), the modeler interface, and 3Di Live site. The 

modeler interface provides integration with QGIS so that users can edit or analyze 

the model visually and interactively. The user can check the simulation in real 

time by using the 3Di Live site. The simulation results in an inundation data set 

containing water level, area, and water depth, which users can process 

additionally. It is good at simulating urban flooding and natural river flow through 

the simultaneous calculation of surface water movement and its interactions with 

existing sewer systems. Moreover, 3Di takes advantage of its high resolution and 

faster simulation speed by applying the quadtree and sub-grid techniques. 

3.1.1 Governing equation 

The 2D depth-averaged shallow water equations (Stelling, 2012) serve as 

the foundation, the continuity equation and momentum equations in the x and y 

directions are as follows: 

 𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑥
+ 𝑣

𝜕ℎ

𝜕𝑦
= 0 (3. 1) 
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 𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑔

𝜕𝜁

𝜕𝑥
+

𝑐𝑓

ℎ
𝑢‖𝑢‖ = 0 (3. 2) 

 𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑔

𝜕𝜁

𝜕𝑦
+

𝑐𝑓

ℎ
𝑣‖𝑢‖ = 0 (3. 3) 

Where h(x, y, t) is water depth, t is timestep, u(x, y, t) and 𝑣(𝑥, 𝑦, 𝑡)are depth-

averaged velocities, g is the acceleration of gravity, 𝑐𝑓 represents a 

dimensionless friction function. 

The relationship between water level and water depth is: 

 h(x, y, t) = ζ(x, y, t) − e(x, y) (3. 4) 

where ζ(x, y, t) is the water level and e(x, y) is the bottom elevation.  

3.1.2 Computational grid  

In 3Di, computational grids are all squares but varying in size, where 

velocities and discharges are defined at the cell borders, while water levels and 

volumes are defined at the middle of the cell. The number of computational cells 

in a simulation has a significant impact on its computational cost. It is always 

necessary to strike a balance between computing time and grid resolution. To 

optimize the grid resolution and reduce computational cost, 3Di applies the 

quadtree method. Figure 2 illustrates the concept of two techniques. The quadtree 

method splits cells into four quadrants from the coarsest to the finest resolution 

gradually in areas with small elevation differences. Local grid refinement allows 

users to concentrate on areas with more intricate flows or where finer-grained 

findings are needed. Instead, other regions are appropriately simplified to 

preserve the overall flow characteristics, and the number of computational grids 
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can be reduced, which helps improve computational efficiency. The maximum 

quadtree level (kmax) is used to determine the largest possible computational grid 

size. The relationship is as follows: 

 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒 = 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒 × 2𝑘𝑚𝑎𝑥−1 (3. 5) 

Flow is strongly influenced by the water depth. The flow acts entirely 

differently, yet the depth is only slightly changed. Therefore, water depth 

information is essential for accurately simulating flow. Despite the increasing 

availability of detailed water depth information, it is challenging to incorporate 

comprehensive grid information without significantly raising computing costs. 

Subsequently, the sub-grid method is used to find the best balance between 

accuracy and computing cost. The sub-grid technique is based on grids with 

different resolutions that allow the water depth to change within a computation 

grid while the water level remains the same. All input data, such as the DEM, 

roughness, and infiltration rates, can be specified on the high-resolution grid. 

However, instead of using a high-resolution grid for simulation, the water levels 

and velocities can be calculated faster by clustering the high-resolution DEM 

pixels into calculation grids.  

3.1.3 Model configuration 

 The parameter settings are displayed in Table 2. To develop the flood model, 

1m spatial resolution Digital Elevation Model (DEM), along with a roughness 

map and infiltration map derived from the land use map of the research area, are 

necessary for the two-dimensional domain; they are illustrated in Figure 3 and 

Figure 4. Besides infiltration, water can exit the system through boundary 
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conditions. All boundary conditions in this study are defined in the one-

dimensional (1D) domain, with the downstream water level set to -3 meters at the 

river mouth. This value is chosen to ensure unimpeded discharge into the sea 

under the assumption of no tidal influence. 

In addition, 3Di supports four sewerage structures, including pipes, weirs, 

orifices, and pump stations. They were built in a one-dimensional network and 

connected with connection nodes and manholes in the model. In simulations, the 

model calculates the volume and water level of each manhole, based on the 

upstream and downstream manhole water levels as well as pipe characteristics.  

3.2 Observed rainfall data  

Quantitative Precipitation Estimation provides a high-resolution radar 

observation and quantitative precipitation estimation. The product is adopted as 

the basis for extrapolation in the MAPLE nowcasting system, calibrating 

precipitation nowcasting, and running the 3Di model. 

3.2.1 Radar network in Taiwan 

The composite radar observations are from 4 S-band radars (RCWF, RCCG, 

RCKT, and RCHL) and 6 C-band radars (RCCK, RCGR, RCLY, RCMK, RCNT, 

and RCSL), the locations of 10 radars are displayed in Figure 5.  

The Composite Reflectivity data provides the most complete observation of 

reflectivity data, with 0.0125°  horizontal resolution and 10-minute temporal 

resolution. Coverage from 115°E to 126.5°E, 18°N to 29°N, serves as the input 

for applying VET. For assessing forecast performance of MAPLE and used as the 
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input of 3Di, the reflectivity is converted to rain rate by the Z-R relationship 

(Chen et al. 2017).  

 Z = 223.04 × 𝑅1.51 (3. 6) 

3.2.2 QPESUMS 

Quantitative Precipitation Estimation and Segregation Using Multiple 

Sensors (QPESUMS) was obtained from the Central Weather Administration 

(CWA), is an operational product derived from different precipitation estimate 

algorithms based on the characteristics of each radar, and is further corrected with 

rain gauge observations (Chang et al., 2021). This product provides 1-h 

accumulated precipitation in a 10-minute time interval.  

Another QPE product is QPESUMS10M, which is experimental and 

provides 10-minute accumulated precipitation every 10 minutes. However, 

QPESUMS10M is not corrected with rain gauge observations and is only 

available after September 2022. These two products have the same spatial 

(0.0125°) and cover the same spatial window from 118°E to 123.5°E, and 20°N 

to 27°N. 

Even though the two QPEs are not exactly equal (one is calibrated by the 

rain gauges), we use both of them instead of two experimental products, such as 

QPESUMS10M, and QPESUMS10M accumulate to one hour, is due to 

QPESUMS is the most accurate operational QPE available. 
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3.3 MAPLE nowcasting system 

McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation 

(MAPLE) is a nowcasting system developed by the J. S. Marshall Radar 

Observatory of McGill University. MAPLE determines the motion field based on 

the prior radar echo data using Variational Echo Tracking (VET). Then it 

generates a nowcast by a semi-Lagrangian backward scheme during the forecast 

period.  

3.3.1 Variational Echo Tracking (VET) technique 

The VET technique, originally described by Laroche and Zawadzki (1995), 

derives the velocity field of radar reflectivity echoes. Here, we apply this to 

calculate the motion field of the composite radar network. The cost function can 

be represented through the following two constraints: 

 𝐽𝑉𝐸𝑇(𝒖) = 𝐽𝛹 + 𝐽𝑉 (3. 7) 

u is the two-dimensional motion vector, calculated by minimizing the cost 

function. The function 𝐽𝛹 is defined as the conservation of reflectivity constraint 

which is the sum of squares of the echo residuals in the domain, 𝐽𝑉  is a 

smoothness penalty function that smooths the motion field by the second-order 

space derivative. They may be respectively expressed as follows: 

 𝐽Ψ = ∬ β(x) [Ψ(𝑡0 , x) − Ψ(𝑡0 − Δt, x − 𝐮Δt)]2 𝑑𝑥 𝑑𝑦
Ω

 (3. 8) 

where β(x) is the weight assigned to this smoothness constraint, Ψ  is the 
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observation of reflectivity, x is position, 𝑡0 is the initial forecast time, and Δ𝑡 

is the time interval between two consecutive observation echoes. 

 

𝐽𝑣 = γ ∬ [(
𝜕2𝑢

𝜕𝑥2
)

2

+ (
𝜕2𝑢

𝜕𝑦2
)

2

+ 2 (
𝜕2𝑢

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑣

𝜕𝑥2
)

2

Ω

+ (
𝜕2𝑣

𝜕𝑦2
)

2

+ (
𝜕2𝑣

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥 𝑑𝑦 

(3. 9) 

where 𝛾 is the weight of the smoothness constraint, 𝑢 and 𝑣 are the motion 

vectors of reflectivity in axis-x and axis-y, Ω is the domain of the motion field 

calculation. The optimal motion field is found by gradually increasing the 

resolution using the scaling-guess approach created by Laroche and Zawadzki 

(1994) to prevent the likelihood of convergence towards a secondary minimum. 

It is to be noted that the motion vector is more reliable in precipitation area rather 

than isolated echoes or no-echo region. There are some adjustable parameters 

which are number of images, time interval of images, reflectivity threshold, 

relative weights 𝛽 and 𝛾 , number of scaling guesses, vector density of each 

scaling guess, amount of smoothing, and temporal smoothing. The parameters 

setting is displayed in Table 3. 

3.3.2 Semi-Lagrangian advection 

Once the VET technique has been utilized, the motion field is interpolated 

at each grid point using bilinear interpolation. Germann and Zawadzki (2002) 

developed a semi-Lagrangian approach that can be used to generate the nowcasts: 

 τ = N∆t (3. 10) 
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 α = ∆t𝐮 (𝑡0, 𝑥 −
𝛼

2
) (3. 11) 

where τ is the length of forecast time, and α is the displacement vector. The 

advection scheme can be divided into N timesteps (∆t). Thus, we can generate 

the suitable α  from 𝐮  with respect to each timestep. In this method, the 

displacement of the system, including rotation, can be well simulated.  

3.4 Experiment setting 

The two figures (Figure 6) illustrate the distribution of rainfall intensity (mm 

per 10 minutes) during major rainfall events in Northeastern and Southwestern 

Taiwan, which cover the study area (Figure 7). Both regions exhibit a decay 

distribution, where lower rainfall intensities are far more frequent than extreme 

ones. However, the characteristics of rainfall events differ between the two 

regions in terms of frequency and intensity. For northeastern Taiwan, the most 

frequent rainfall intensity is 0.5 to 1 mm/10min with 464,068 occurrences, and 

gradually decreases as intensity increases. The maximum recorded rainfall is 36.5 

mm/10min, and 291 occurrences exceeded 20 mm/10min, demonstrating that 

such extreme events are possible and measurable. For southeastern Taiwan, the 

most frequent rainfall bin is slightly higher, around 2 mm/10min (541,035 

occurrences), indicating a tendency for heavier moderate rainfall compared to the 

Northeast. The maximum recorded rainfall is 81.1 mm/10min, showing that 

extremely high rainfall rates can develop. Also, 3,042 occurrences exceeded 20 

mm/10min, confirming that these events are not isolated and must be considered 

in hydrological analysis. Given this, setting 20 mm/10 min as an idealized rainfall 
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intensity for 3Di simulations is essential to assess potential impacts. 

The rainfall exceeding 20 mm in 10 minutes is possible to occur due to 

tropical cyclones or other weather systems, and knowing when and where is 

critical. To accurately capture these events, a 10-minute Quantitative 

Precipitation Estimation (QPE) system providing 10-minute accumulated rainfall 

is necessary. However, the operational QPE product in Taiwan, QPESUMS, only 

provides a 10-minute time resolution but one hour of accumulated precipitation. 

This will provide real-time monitoring, helping to identify areas experiencing 

intense rainfall.  

For QPESUMS and QPESUMS10M, precipitation is fed directly into 3Di 

with their respective temporal resolutions, hourly and 10 minutes. For QPN from 

MAPLE, we generate a 1-hour-long time series of nowcast precipitation every 

hour with a temporal resolution of 10 minutes. Using the Z-R relationship, hourly 

precipitation can be derived from reflectivity. The following three nowcast 

strategies have been applied: Radar echo data is transformed into precipitation 

over 10-minute, 30-minute, and 60-minute intervals using the Z-R relationship. 

These QPN are then fed into the 3Di model every 10 minutes, 30 minutes, and 60 

minutes, referred to as MAPLE10mins, MAPLE30mins, and MAPLE60mins, 

respectively. The diagram is shown in Figure 8.  

Figure 9 illustrates the overall workflow of the inundation simulations 

conducted in this study. Three different rainfall inputs were used to drive the 

hydrodynamic model: (1) the original QPESUMS radar rainfall product, (2) an 

experimental version of QPESUMS with 10-minute accumulated rainfall 

(referred to as QPESUMS10M), and (3) MAPLE nowcast rainfall data. Each 
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precipitation input was independently applied to the 3Di hydrodynamic model to 

generate corresponding flood simulations: QPESUMS-based, QPESUMS10M-

based, and MAPLE-based inundation results. This framework allows for a 

comparative assessment of the sensitivity of flood modeling outcomes to various 

types of rainfall input, encompassing both observed and forecasted data. The 

comparison between QPESUMS and QPESUMS10M enables the evaluation of 

the benefits of higher temporal resolution, while the MAPLE nowcast 

performance is assessed using the QPESUMS simulation as a benchmark. 

 

Chapter 4. Verification strategies 

4.1 Observed flood data 

In the past, real-time flood data relied solely on reports from affected 

residents and EMIC notification, who typically describe flooding as reaching 

knee height, half a wheel high, or an approximate depth. After a flood, 

government personnel conduct on-site investigations but often rely on resident 

interviews and water marks left behind to estimate flood depth. Fortunately, a 

more comprehensive set of observational data is available in selected cases, 

including EMIC, flood sensors and satellite data, which improve the validation 

of the 3Di flood model. EMIC data offers single-time measurements of general 

water depth in a specific area. Though it lacks temporal continuity, it contributes 

to understanding flood conditions at key moments. Meanwhile, the flood sensors 

provide continuous time series data at specific locations, capturing detailed water 
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depth variations over time. This allows for high temporal resolution validation of 

model simulations. Additionally, satellite data offer a general flood extent at 

specific time points, providing a spatial overview of inundated areas. This data is 

crucial for large-scale validation, complementing the localized but high-

frequency measurements from flood sensors. 

By integrating all three data sources: EMIC data, flood sensors, and satellite 

imagery, we can maximize the validation of the 3Di model, ensuring that both 

temporal and spatial aspects of flooding are accurately represented. This multi-

source approach strengthens confidence in the model’s ability to simulate real-

world flood events, making it a more reliable tool for flood forecasting and risk 

assessment. Table 4 displays the data availability in different cases. Red 

represents unavailable or lacking data, while green indicates available data. There 

is only a limited EMIC record in Dongshan, while there are more consistent 

records in Kaohsiung. The flood sensors in Taiwan were installed after 2022, 

meaning that historical flood events before this period lack sensor data. Moreover, 

Sentinel-1 successfully captured post-flood images within hours of key events on 

2018-08-23, 2024-07-24, and 2024-11-12, demonstrating its effectiveness in 

flood monitoring. However, there are noticeable data gaps in both EMIC and SAR 

records, particularly in events such as 2024-10-03 and 2024-10-24, which could 

affect flood assessment in those cases. Overall, Dongshan has fewer data points 

compared to Kaohsiung. 

4.1.1 EMIC 

Emergency Management Information Cloud (EMIC) is a cloud-based 



20 

 

information integration platform. Developed in collaboration with the Taiwanese 

Fire Department, it enhances emergency preparedness and response efficiency by 

collecting, analyzing, and sharing diverse emergency data. The system includes 

data on various types of disasters, such as floods, earthquakes, and fires. 

Specifically, the system includes flood information on water depth, notification 

time, locations, descriptions of the severity, and the impacted areas, which are 

frequently used to validate flood models in the early stages. However, incomplete 

or incorrect information will affect the reliability of the data.   

4.1.2 Flood sensor 

 The point-based flood sensors, where installed roadside, measure water 

depth and send the data back to the cloud monitoring system. These sensors 

provide data for real-time flood disaster warnings, flood model validation, and 

flood extent estimation. Chang et al. (2024) evaluated the accuracy and reliability 

of these sensors in detecting flood events and confirmed their value in enhancing 

flood modeling and decision support. Their findings support using sensor data as 

a reliable reference for real-time applications and post-event model validation in 

this study. Currently, over 2300 flood sensors have been installed across Taiwan; 

the location is mainly based on elevation, historical events, and flood hotspots. 

There are, respectively, 37 and 146 flood sensors in Dongshan and Kaohsiung; 

their location is displayed in Figure 10. 

4.1.3 SAR 

Synthetic Aperture Radar (SAR) signals are mirrored on smooth, open water 
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surfaces, resulting in lower backscatter values. Since SAR can penetrate cloud 

cover and remain unaffected by adverse weather conditions, it is widely used for 

flood detection. However, for SAR to be effectively used, the imaging time must 

correspond accurately to the flood event. Significant terrain variations can cause 

radar shadowing and strong reflections in urban areas, making it difficult to detect 

water bodies properly. Moreover, SAR performs best in detecting areas that are 

completely covered by water, while partially flooded regions may be harder to 

identify. 

SAR data used for flood monitoring comes from Sentinel-1, a C-band radar 

satellite operated under the Copernicus Programme by the European Space 

Agency (ESA). The Level-1 Ground Range Detected (GRD) product with VV 

polarization undergoes pre-processing, which includes applying orbit files, 

radiometric calibration, multilooking, speckle reduction, and terrain correction. 

Flood detection is addressed as a binary segmentation problem using bi-level 

thresholding and a simple histogram analysis, where the goal is to distinguish 

dark pixels from brighter ones. Darker pixels typically indicate flooded areas, 

while brighter pixels correspond to non-flooded regions. In this study, the 

threshold values of -10 dB for Kaohsiung and -15 dB for Dongshan are applied 

based on the histogram analysis, as shown in Figure 11. The 5 dB difference 

between the two thresholds may be attributed to differences in radar incidence 

angles and surface water characteristics, which influence the backscatter intensity 

observed in the images. 
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4.2 Verification approaches 

4.2.1 Continuous Verification 

The spatial correlation coefficient (SCC) from continuous verification and 

the root mean square error (RMSE) are used to assess the nowcasting system's 

performance. The degree of similarity between the forecast and the observation 

can be evaluated by the SCC. The SCC can be written as follows: 

 𝑆𝐶𝐶 =
∑(𝐹 − 𝐹̅)(𝑂 − 𝑂̅)

√∑(𝐹 − 𝐹̅)2 (𝑂 − 𝑂̅)2
 (4. 1) 

where F and O denote the total rainfall of the prediction and the observation, and 

𝐹̅and 𝑂̅ are an area average over a two-dimensional precipitation field. SCC 

varies between 0 and 1, the latter being the ideal value. The RMSE measures 

quantitatively the deviation between the forecast and the observation. The 

definition of the RMSE is as follows: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝐹 − 𝑂)2𝑁

𝑖=1

𝑁
 (4. 2) 

Where N is the total number of grid points. RMSE varies between 0 (perfect 

match) and +∞. 

4.2.2 Categorical verification 

Categorical verification is to assess the capability of different levels of flood, 

precipitation, or another signal by a binary threshold. It is used to compare the 
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3Di model and other observational flood data. Each grids in the model domain 

are classified into one of four categories in a confusion matrix (Table 5), which 

is based on whether the flood was correctly predicted. The hit (a) represents the 

number of cases where both the simulation and observation identify a flood. The 

miss (b) occurs when a flood is observed but not simulated. The false alarm (c) 

refers to a flood identified by the simulation but not observed. The correct 

negative (d) indicates cases where both the simulation and observation agree that 

no flood occurred. In this study, the probability of detection (POD), the false-

alarm rate (FAR), the accuracy, the bias, and the critical success index (CSI) of 

the categorical verification are formulated as: 

 𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑏
 (4. 3) 

 𝐹𝐴𝑅 =
𝑐

𝑎 + 𝑐
 (4. 4) 

 𝐵𝑖𝑎𝑠 =
𝑎 + 𝑐

𝑎 + 𝑏
 (4. 5) 

 𝐶𝑆𝐼 =
𝑎

𝑎 + 𝑏 + 𝑐
 (4. 6) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 (4. 7) 

where the range of POD, Accuracy, and CSI are from 0 to 1, with a perfect score 

of 1. FAR also has a range of 0 to 1, while the best value is 0. The ratio of the 

forecasted event to the observed is known as bias, ranges from 0 to ∞, and is 

perfect in 1. The forecast overstated the events if the bias was bigger than 1. 
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4.2.3 Neighborhood method 

While binary verification methods provide a general summary of model 

performance, more insights can be gained through a scale-selective approach, 

which is based on the Fraction Skill Score (FSS), providing additional insights 

by considering spatial scale variations in forecast skill. This technique, widely 

used in atmospheric sciences for evaluating precipitation forecasts (Roberts and 

Lean, 2008), applies a neighborhood-based method to assess how well forecasted 

patterns align with observations across different spatial scales. Hooker et al. 

(2022) demonstrated that FSS can be effectively applied to flood inundation 

verification using SAR data, as it works well with 2-D flood maps where each 

grid cell is classified as either flooded or unflooded.  

A neighborhood approach based on the Fraction Skill Score (FSS) that 

considers uncertainty in spatial scale. Firstly, we interpolated the SAR data from 

10m to 1m, the same as the 3Di flood map. Then, assign each grid cell as flooded 

(1) or unflooded (0) by the same threshold that has been defined previously in 

both SAR and 3Di. The FSS is defined as: 

 

𝐹𝑆𝑆𝑛 = 1 −

1
𝑁𝑥𝑁𝑦

∑ ∑ [𝑂𝑛𝑖𝑗 − 𝐹𝑛𝑖𝑗]
2𝑁𝑦

𝑗=1
𝑁𝑥
𝑖=1

1
𝑁𝑥𝑁𝑦

∑ ∑ [𝑂𝑛𝑖𝑗
2 + 𝐹𝑛𝑖𝑗

2 ]
𝑁𝑦

𝑗=1
𝑁𝑥

𝑖=1

 (4. 8) 

where 𝑁𝑥  and 𝑁𝑦  represents the number of interested domain, O is the 

observation, F is the model data. The neighborhood is determined in n, a square 

form as n × n surrounding the grid cell. For instance, if n=1, only a single grid 

is calculated. On the other hand, when n=3, then 9 grids are taken into account. 
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FSS of 1 is said to have perfect skill, and 0 means no skill. The spatial scales 

n=11,15,19,23,27,31 were selected by considering the different original 

resolutions of the model and SAR data. 

Chapter 5. Results and discussion 

An idealized experiment with three different total rainfall scenarios is first 

displayed in section 5.1. Secondly, the forecast skill of MAPLE is examined in 

section 5.2. The validation of the 3Di model with multiple flood observational 

data is shown in section 5.3. In section 5.4, the discrepancy between QPESUMS 

and QPESUMS10M is evaluated. The results of all real cases with QPESUMS, 

QPESUMS10M, and MAPLE are shown in sections 5.4 and 5.5.  

5.1 Idealized experiment 

Figure 12 illustrates the 5-hour designed rainfall simulation, inundation area 

for 20 mm distributed evenly in 10 minutes, 30 minutes, and 60 minutes in 

Dongshan. Three idealized scenarios achieve a flood peak at the moment when 

the rain ends, following which the inundation area gradually descends in the next 

few hours. The scenario of 20 mm concentrate within 10 minutes has a sharp 

increment in flood area, it is the earliest to hit the peak, and also has more 

inundation area than others. On the other hand, the other two scenarios show a 

slight difference in the peak value, but differ in the time to reach peak. 

The bar charts (Figure 13) compare the percentage of flooded and unflooded 

areas under two different rainfall distributions: concentrated within 10 minutes 

and equally distributed over 60 minutes, the x-axis shows the variation of total 
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rainfall. Each grid cell is classified into one of four conditions: flooded in both 

rainfall scenarios, flooded only under the 10-minute concentrated rainfall, 

flooded only under the 60-minute evenly distributed rainfall, or unflooded in both 

scenarios. In both locations, as total precipitation increases, the flooded area 

expands while the unflooded area decreases. The pink bars represent areas 

flooded under the 10-minute concentrated rainfall but remained unflooded under 

the 60-minute evenly distributed rainfall, showing a growth when the total 

precipitation increases. In contrast, the charts with values of zero indicate that no 

areas were flooded under the 60-minute distribution while remaining unflooded 

under the 10-minute scenario. It is evident that when rainfall is concentrated in a 

short period, some areas experience flooding, whereas the same total precipitation 

distributed over a longer duration does not cause flooding.  

Eventually, the root mean square difference (RMSD) among the flood pixels 

is displayed in Figure 14, comparing the difference between 20 mm distributed 

evenly in 10 minutes, 30 minutes, and 60 minutes in both locations. In both plots, 

the RMSD values generally decrease as total rainfall increases from 10 mm to 40 

mm. This is because the RMSD calculation only considers grid points where 

flooding occurs (water depth > 0.1m). When the total rainfall is low, fewer grid 

points meet this criterion, which can amplify differences. As rainfall increases, 

more grid points experience flooding, leading to a more stable and representative 

comparison, which reduces the observed RMSD differences. This can also 

explain the difference between the two places, the RMSD is computed over a 

smaller subset of the domain, making localized variations more significant. The 

blue line (60 mins vs. 10 mins) consistently shows higher RMSD values than the 

orange line (30 mins vs. 10 mins). This suggests that the water depth differences 
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are more pronounced when comparing 60-minute rainfall with 10-minute rainfall 

than when comparing 30-minute with 10-minute rainfall. In other words, shorter, 

more intense rainfall (10 mins) leads to more significant differences in water 

depth compared to longer durations (60 mins). 

The result emphasizes the importance of rainfall intensity in flooding, 

showing that short, intense rain is more likely to overwhelm drainage systems 

and lead to flooding. The result indicates that if we only use one-hour-resolution 

precipitation data to drive the hydrological forecast, we may underestimate and 

delay the forecast because we cannot tell the difference if we only have coarse-

time resolution data. 

5.2 Validation of 3Di with observational flood data 

5.2.1 Using EMIC and flood sensors as a reference 

EMIC data records inundation points during flood events, providing a 

valuable reference for model verification. Given the relatively abundant data 

available for Kaohsiung, we focus on utilizing EMIC data primarily for this 

region. Table 6 presents the number of EMIC records in each case of Dongshan 

and Kaohsiung. Figure 15 illustrates the extent of flooding simulated by the 3Di 

model and the distribution of EMIC points. In these three events, a significant 

concentration of EMIC points is observed in the southern part of the domain, 

characterized by lower elevation and dense urbanization, which appears to be at 

higher risk of flooding. According to the number and the distribution of EMIC, 

the case of 2024-07-24 is the most widespread flooding, particularly in the central 
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region. The flooding of 2018-08-23 is also evident, particularly in the northern 

region. Compared to the previous two events, 2024-10-03 has the least flood area 

and EMIC points, and is concentrated only in the south. Table 7 presents the 

detection rate of the model simulation compared with EMIC. The event of 2024-

07-24 has the highest agreement (95%), suggesting that most inundation points 

can be captured correctly by the 3Di model. The other two cases have about 80% 

detection rate, indicating a marginally lower performance.  

Based on the model’s predictions and the actual observation, accuracy 

quantifies the proper identification and classification of flooded or unflooded 

areas. Figure 16 presents the accuracy across different cases. The results indicate 

a notable discrepancy in performance between the two locations, with Kaohsiung 

outperforming Dongshan. The Kaohsiung cases demonstrate superior 

classification performance, with all instances surpassing the 0.5 accuracy 

threshold. In contrast, the accuracy of Dongshan exhibits greater variability, with 

some cases achieving moderate performance, while the case of 2024-07-24 in 

Dongshan records the lowest accuracy, failing to reach 0.5, suggesting limitations 

in the model's predictive capability for that event. This is because there are only 

37 flood sensors in Dongshan, significantly fewer than the 146 sensors in 

Kaohsiung, making the performance more sensitive. However, when working 

with unbalanced datasets, when one class hugely outnumbers the others, its 

reliability declines. Since there are usually far fewer flooded samples than non-

flooded ones, this problem is especially important to flood categorization; relying 

only on the metric may result in an overoptimistic estimation of the classifier's 

performance.  
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To tackle this limitation, performance diagrams were obtained in the study. 

Several forecast accuracy verification metrics are shown in the performance 

diagram (Roebber et al. 2009). The upper-right corner of the diagram represents 

the best forecast quality, when POD, the successive ratio (1-FAR), BIAS, and CSI 

all approach 1. The region of warm color indicates that CSI > 0.6. The dashed 

line indicates BIAS, and the forecast is unbiased if the diagonal equals 1. Figure 

17 shows the diagram of 4 cases in Dongshan and 2 cases in Kaohsiung, using 

flood sensors as reference. Three of the cases in Dongshan had similar success 

ratios around 0.4 and a CSI around 0.5, but only 1 had the POD close to 1. They 

tended to underestimate due to the small BIAS and POD. On the other hand, in 

the other cases, they performed POD above 0.7; however, there was a wide range 

in success ratios, about 0.3 to 0.7, indicating an overestimate due to the BIAS 

above 1.  

5.2.2 Using SAR data as a reference 

By the same token, the verification technique was further applied to SAR 

data. Figure 18 illustrates the distribution of EMIC points and the SAR detection 

in Kaohsiung. It is found that SAR only detects a small flood area in the densely 

recorded areas due to the urban area has a high backscatter value, whether there 

is water or not. Secondly, the northeast region has plenty of signals, which are 

considered to be the radar shadow caused by the terrain. Hence, we only focus on 

the domain in the red frame rather than the whole domain. For Dongshan, we 

remain to obtain the whole region. Figure 19 shows the accuracy across different 

events, using SAR data as a reference. These cases were selected because of their 
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availability of SAR data, including 2024-07-24 in both locations, 2024-11-12 in 

Dongshan, and the additional case 2018-08-23 in Kaohsiung. Apparently, all 

cases with accuracy far surpass the threshold, outperforming the one using flood 

sensors. Specifically, the event occurred in the Dongshan exhibit a greater 

performance; it is possibly caused by the geographical feature, a wide range of 

wetland in the northeastern in the basin. Water-covered areas, such as wetlands 

or lakes, are easier to detect by SAR because its signals are reflected on a smooth 

water surface. As a result, hits would rise in proportion to the area the SAR 

detected. For Kaohsiung, the accuracy of 2018-08-23 is slightly greater than 

2024-07-24; a possible reason is that there may be a more severe flood on 2018-

08-23 in the north region, which was our focus area, according to the spatial 

distribution of the EMIC report.  

Figure 20 illustrates the performance diagram taking the SAR data as 

reference. The case of 2018-08-23 stayed close to the top right corner of the 

diagram, having the best performance. Except for this, all cases demonstrate a 

great success ratio of about 0.8 to 1, meaning that the low false alarm rate. 

However, the cases of 2024-07-24 in both locations and 2024-11-12 in Dongshan 

have a small POD, from 0.2 to 0.4, showing an underestimation by the model.  

The model's performance is statistically assessed using the neighborhood 

approach. Figure 21 illustrates the Fractions Skill Score (FSS) across varying 

neighborhood sizes (from 11 to 31) for different events and model configurations. 

Given that the original SAR dataset has a spatial resolution of 10 meters, the 

smallest neighborhood considered is 11 m × 11 m to align more meaningfully 

with the input data's native resolution. All curves show a gradual upward trend, 
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indicating marginal improvement in FSS as the neighborhood size increases. This 

improvement results from larger neighborhoods smoothing out discrepancies 

between predicted and observed values, thus improving FSS. Notably, the events 

in Dongshan consistently exhibit higher FSS values across all neighborhood sizes, 

likely due to the higher proportion of wet areas in the basin, which enhances 

spatial agreement. In contrast, events in Kaohsiung demonstrate lower FSS scores, 

suggesting less spatial consistency between predictions and observations. 

Overall, while the neighborhood method yields some improvement in FSS, 

the gains are modest, highlighting the already strong spatial performance of the 

model at the native resolution. If two-dimensional observational data with a 

resolution closer to the model’s native grid were available, it would further 

enhance the reliability and precision of the validation process. Nevertheless, there 

are still significant drawbacks to SAR-based flood monitoring, particularly in 

urban and vegetated places where complex scattering mechanisms may make it 

difficult to accurately identify water regions.   

5.3 Comparison between QPESUMS and QPESUMS10M 

Figure 22 presents the spatial distribution of average differences between 

QPESUMS10M accumulated to one hour and QPESUMS for different events, 

with red areas indicating higher values in QPESUMS10M and blue areas showing 

higher values in QPESUMS. The maps reveal distinct spatial patterns in 

precipitation discrepancies, highlighting regional variations in overestimation 

and underestimation. In Dongshan, the QPESUMS10M dataset tends to 

underestimate rainfall compared to QPESUMS. However, localized 



32 

 

overestimations appear in certain events, suggesting variations in short-duration 

rainfall capture. In contrast, Kaohsiung exhibits a more consistent overestimation 

pattern, where QPESUMS10M shows higher rainfall amounts across larger areas, 

particularly in heavy rainfall cases. The event on 2024-07-24, influenced by 

Typhoon Gaemi, shows widespread discrepancies with large regions of 

overestimation and underestimation, reinforcing the high dispersion seen in the 

scatter plots. These spatial differences indicate that QPESUMS10M may struggle 

to accurately capture localized convective storms or extreme rainfall, which has 

implications for hydrological modeling and flood forecasting. 

Figure 23 presents the precipitation results for each hour in the events, 

showing density scatter plots comparing the QPESUMS10M sum up to one hour 

(x-axis) with the QPESUMS (y-axis). Figure 23 a-d present the area in Dongshan, 

Figure 23 e-f present the area in Kaohsiung. The overall distribution of the scatter 

plot in each location between events is quite different, but all display a high 

density on the line of y = x in smaller rainfall amounts, along with a high 

correlation coefficient. In Dongshan, the density of three events (2024-07-24, 

2024-10-24, and 2024-11-12) is higher above the y = x line, indicating that 

QPESUMS10M tends to have weaker precipitation than QPESUMS. Conversely, 

in the other events, the QPESUMS10M has more intense precipitation than the 

QPESUMS, especially in Kaohsiung. This suggests that in Dongshan, short-

duration rainfall is often underestimated by QPESUMS10M, while in Kaohsiung, 

QPESUMS10M overestimates precipitation, possibly due to convective storm 

activity. Additionally, on 2024-07-24, Typhoon Gaemi led to significant rainfall 

in both regions, causing a greater dispersion of grid points and a regression line 

that deviates more from y = x compared to other events. The high variability 
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observed indicates that high-intensity convective bursts that are not evenly 

distributed within an hour may introduce biases in hydrological and flood 

modeling. 

Although the overall differences between QPESUMS and QPESUMS10M 

may not appear extreme, their impact on flood modeling is significant. Figure 24 

and Figure 25 reveal that when QPESUMS10M and QPESUMS are used as input 

for the 3Di flood model, the simulated inundation area of QPESUMS10M is 

consistently larger, and the flood peaks occur earlier across all events and both 

locations. This suggests that the finer temporal resolution allows for the earlier 

detection of flooding, which is particularly important for early warning systems 

and disaster preparedness. Furthermore, the relationship between rainfall 

intensity and flood area growth indicates that QPESUMS10M's higher resolution 

enables a more responsive simulation of hydrological processes. When rainfall 

intensity is higher, the difference between the flood areas produced by the two 

datasets is more pronounced. This suggests that high-resolution precipitation data 

can better capture short-duration, high-intensity rainfall events, leading to more 

realistic flood forecasts. Given these findings, further analysis is necessary to 

quantify the impact of different precipitation inputs on hydrological simulations. 

5.4 Evaluation of MAPLE's forecast performance 

The forecast skill of MAPLE can be evaluated by comparing the predicted 

precipitation field with QPESUMS. The Z-R relationship in (3. 6) converts the 

predicted precipitation field from reflectivity(Z). To better assess the performance 

of the data used, we validated the rainfall field based on the strategy applied in 
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the 3Di model, specifically focusing on the rainfall over land. The heat map in 

Figure 26 presents SCC values of one-hour accumulated precipitation between 

the three nowcast strategies and QPESUMS across four events. SCC values above 

0.5 indicate predictive ability. In all cases, MAPLE10mins consistently exhibits 

more blue regions and remains relatively stable throughout the day. In contrast, 

MAPLE30mins is sometimes close to MAPLE10mins but fluctuates more. 

However, MAPLE60mins displays more red regions, indicating the lower SCC 

and the weakest performance.  

RMSE was calculated to quantitatively assess the errors of the 3 strategies 

of nowcast. As shown in Figure 27, MAPLE10mins consistently has the lowest 

RMSE, while MAPLE30mins follows closely behind. MAPLE60mins has the 

highest RMSE in all cases, showing that longer durations lead to increased errors. 

In the cases of 2024-07-24 and 2024-10-03, they both showed significant 

fluctuation, with peaks reaching 15 mm and 10 mm at certain hours, respectively. 

These are likely due to increased rainfall caused by the landfall of the tropical 

cyclones in these cases. On the contrary, in 2024-10-24 and 2024-11-12, RMSE 

are relatively lower, with less variability over time. Overall, although the value 

of SCC and RMSE is case-dependent, the result shows that MAPLE10mins is the 

most reliable forecast across all cases. 

5.5 Hydrological value of MAPLE forecasts 

Figure 28 illustrates the inundation area across events, comparing the 

performance of various precipitation inputs: QPESUMS, QPESUMS10M, and 

MAPLE at different input intervals (10, 30, and 60 minutes). Figure 28 a-d are in 
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Dongshan, Figure 28 e and f are in Kaohsiung. Figure 28 a illustrates the temporal 

evolution of the flood inundation area, beginning from 04:00 UTC on July 24, 

2024. A clear divergence in flood extent is observed, particularly during the peak 

period between 09:00 and 12:00, where QPESUMS10M shows the highest 

inundation area, peaking above 20 km², QPESUMS displays a slightly lower peak 

(around 17 km²), while the MAPLE-based forecasts show relatively consistent 

results with a peak near 15 km², regardless of the temporal resolution. The 

MAPLE outputs remain more stable across the event, reflecting potentially more 

smoothed rainfall estimates. MAPLE forecasts show lower flood extents overall, 

indicating a tendency to underestimate inundation compared to QPESUMS and 

QPESUMS10M. In Figure 29, the reflectivity fields are similar, a strong rainband 

of a tropical cyclone is moving in, however, there are significant differences in 

the rainfall field comparing the result of Z-R conversion and QPESUMS10M. In 

addition, MAPLE with a 60-minute update interval appears less smooth than 

10mins and 30mins, showing more fluctuation across the timeline. While the 

timing of the peak rainfall is similar across all methods, the recession (drainage) 

rate differs, with MAPLE showing a distinct pattern from QPESUMS, possibly 

due to differences in rainfall accumulation. 

Figure 28b illustrates the flood inundation area starting from 08:00 UTC on 

October 3, and shows a comparatively smaller event than in Figure 28a. The 

results indicate that QPESUMS10M and QPESUMS forecast larger inundation 

areas, peaking around 15:00–16:00, with maximum extents of approximately 10 

km² and 8 km², respectively. In contrast, all MAPLE forecasts (10, 30, and 60mins) 

remained under 2 km² throughout the simulation period. This underestimation is 

primarily attributed to forecast error. A detailed comparison of the reflectivity 
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fields reveals a key discrepancy (Figure 30 and Figure 31): in the observed data, 

a convective system develops directly over the Dongshan basin, while in the 

forecast fields, this system is entirely absent. This highlights a fundamental 

limitation of nowcasting systems, difficulty in detecting and forecasting new, 

rapidly developing convective cells, particularly when they initiate locally and 

are not connected to pre-existing echoes.  

Figure 28c displays the flood inundation area starting from 04:00 UTC on 

October 24. The QPESUMS data reveals two distinct peaks in inundation extent. 

MAPLE products, particularly MAPLE10mins, accurately capture the timing and 

magnitude of the first peak, demonstrating their capability in reflecting the initial 

rainfall event. However, significant discrepancies emerge during the second peak. 

All MAPLE variants, especially MAPLE60mins, exhibit substantial 

overestimations of the inundated area compared to QPESUMS. To further 

investigate this divergence, a comparison between forecast fields and observed 

rainfall was conducted (Figure 32). Observational data indicate the presence of a 

strong rainband, which slightly weakened in the subsequent hour. In contrast, 

MAPLE showed the strong rainband moving directly into the basin, which did 

not occur in the observation. This caused a sharp increase in the simulated flood 

area and led to an overestimation of the flooding extent. Among the MAPLE 

products, since MAPLE60mins assumes a constant rainfall rate over one hour 

based on a single nowcast, it tends to smooth over temporal variability and 

exaggerate the impact of forecasted intense rainbands. In contrast, 

MAPLE10mins, despite relying on the same hourly nowcast, introduces rainfall 

into the hydrological model at a finer temporal resolution, which results in 

simulations closer to those based on QPESUMS10M. This emphasizes that not 
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only the forecast accuracy but also the temporal resolution of rainfall input plays 

a crucial role in flood simulation outcomes. 

Figure 28d presents the simulated flood area starting at 04:00 UTC on 

November 12, 2024. In this case, both QPESUMS and QPESUMS10M show a 

rapid rise in inundation extent during the early hours, peaking around 08:00–

09:00 UTC. The MAPLE-based simulations generally follow the same trend, with 

MAPLE10mins closely capturing the timing and magnitude of the peak flood area, 

though with some underestimation during the initial rapid increase. Interestingly, 

all MAPLE simulations show a smoother flood area evolution compared to 

QPESUMS, especially during the rising limb, suggesting limitations of position 

errors of the rainband or Z-R conversion. Figure 33 displays the difference 

between the forecast and the observation. Despite using the same forecast inputs, 

the difference in rainfall input frequency plays a key role. MAPLE60mins tends 

to produce the smoothest and most delayed flood response, while MAPLE10mins 

shows better agreement with QPESUMS10M, reflecting the benefit of higher 

temporal resolution when simulating rapid flood events. However, all MAPLE 

simulations exhibit a similar rate of decrease during the recession limb, closely 

matching the trend observed in the two QPE-based simulations, indicating that 

the recession phase was well captured in the forecasts. 

The inundation areas for the Kaohsiung cases on 2024-07-24 and 2024-10-

03 are shown in Figure 28 e and f, respectively. The shape of the flood area curves 

across all datasets is generally consistent, indicating that the nowcasting approach 

is able to capture the overall flood trend reasonably well. However, MAPLE 

consistently underestimates the inundation extent compared to QPESUMS10M 
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and QPESUMS, particularly in the more intense event on 2024-07-24. This 

suggests that while the nowcasts reflect the temporal pattern of rainfall, their 

intensity, especially during high-rainfall events, may be insufficient to accurately 

reproduce peak flood conditions.  

Overall, the results demonstrate that MAPLE nowcasts, despite certain 

limitations in capturing localized convective developments, still offer meaningful 

value in hydrological simulations. Particularly, the consistency in trend 

reproduction and the reasonable performance in capturing peak timing, especially 

under the 10-minute input scheme, suggest that MAPLE can effectively support 

flood forecasting when high-frequency input is applied. While it tends to 

underestimate flood extent in intense events, its smoother rainfall estimates 

reduce noise and yield stable flood area simulations, which may be advantageous 

in operational forecasting. These findings indicate that MAPLE can contribute 

valuable input to flood models. In addition, the results indicate that smaller basins 

like Dongshan are more sensitive to the accuracy of precipitation inputs, where 

errors in nowcast rainfall fields more directly translate into discrepancies in flood 

extent simulations. 

 Chapter 6. Conclusion and future work 

6.1 Conclusion 

In this study, we investigate the ability of high temporal resolution 

precipitation data to improve flood simulation accuracy in 6 cases. Two QPE 

products and the forecast by MAPLE are assessed and fed into the 3Di model. 
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Furthermore, the flood model was validated by the observational flood data with 

improved data availability from these events. The forecast results of MAPLE are 

evaluated by continuous verification with SCC and RMSE, categorical 

verification with accuracy, performance diagram, and neighborhood method. The 

following is a summary of the study's findings: 

 

1. To understand the impact of rainfall intensity distribution on flooding, this 

study examines different rainfall durations with equal total precipitation. The 

results show that short-duration, high-intensity rainfall leads to faster and 

more extensive flooding compared to longer-duration events. This difference 

in flood response highlights how rainfall intensity, not just total amount, 

influences flood risk. The findings suggest that using coarse temporal 

resolution in hydrological modeling may underestimate flood potential and 

delay warnings, underscoring the need for high-resolution precipitation 

input for accurate forecasting and flood simulation.  

2. To validate the 3Di flood model, this study uses EMIC observational flood 

points as reference, focusing on Kaohsiung due to its richer data. The results 

show a strong agreement between simulated and observed inundation for the 

2024-07-24 event, with a 95% detection rate. Other cases also reach about 

80%, confirming reasonable model performance. However, classification 

accuracy varies by region, with Kaohsiung consistently outperforming 

Dongshan. In Dongshan, low accuracy in some cases highlights limitations 

in predicting complex flood patterns. Due to the imbalance in flood and non-

flood samples, performance diagrams were applied for more reliable 



40 

 

verification. The diagrams reveal a mix of underestimation and 

overestimation depending on the event, emphasizing the need for careful 

evaluation when applying flood simulation in diverse terrains. 

3. SAR data provides another validation source, offering full spatial coverage. 

When compared with 3Di outputs, SAR-based accuracy is generally higher 

than that of flood sensor comparisons, especially in Dongshan, where 

wetlands enhance water detection. However, SAR data is less reliable in 

urban areas or mountainous regions due to radar shadow and high 

backscatter. Despite these limitations, SAR-based validations consistently 

show high success ratios and low false alarm rates, although low POD in 

some events suggests model underestimation in capturing flooded areas. 

These results highlight SAR’s value in verifying model performance. 

4. The neighborhood verification method, using FSS, was applied to assess 

spatial consistency between 3Di simulations and SAR observations. Results 

show that increasing the neighborhood size improves FSS values, indicating 

better spatial agreement as local differences are smoothed. Events in 

Dongshan show higher FSS across all scales, likely due to the larger wetland 

coverage, while Kaohsiung events exhibit lower scores, suggesting more 

localized discrepancies. Overall, the method confirms acceptable spatial 

skill at native resolution and suggests potential benefits from higher-

resolution validation datasets in the future. Nonetheless, SAR limitations in 

complex urban or vegetated environments remain a key challenge for 

accurate flood mapping. 

5. To evaluate how the temporal resolution of precipitation data affects flood 
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modeling, this study compares QPESUMS10M and hourly QPESUMS 

datasets. Spatial analysis reveals discrepancies: QPESUMS10M often 

underestimates rainfall in Dongshan, while in Kaohsiung, it tends to 

overestimate. Scatter plots further confirm these patterns, especially under 

typhoon-influenced rainfall, where high variability is observed. Although 

overall precipitation differences between the two datasets are not extreme, 

flood simulations using QPESUMS10M consistently produce earlier and 

larger inundation areas. This indicates that higher temporal resolution 

enables better detection of short-term, intense rainfall and its hydrological 

impact, emphasizing its value in accurate flood forecasting and early 

warning systems. 

6. To evaluate the performance of MAPLE's nowcasting system, we compared 

predicted rainfall fields which converted using a Z-R relationship with 

QPESUMS, and focusing on land-based precipitation. SCC analysis shows 

that MAPLE10mins consistently provides higher predictive skill across all 

events, with more time exceeding the SCC threshold of 0.5. In contrast, 

MAPLE60mins exhibits significantly weaker performance, with more low-

correlation regions. In terms of error magnitude, RMSE analysis further 

supports this pattern, MAPLE10mins maintains the lowest errors across 

events, while MAPLE60mins shows the highest. Overall, the results suggest 

that MAPLE10mins offers more reliable precipitation predictions in Taiwan. 

7. The performance of various precipitation inputs on flood simulation was 

assessed by comparing inundation areas generated by the 3Di model across 

different events. Simulation results show that MAPLE generally 
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underestimates flood extent, especially during intense rainfall events. 

However, the MAPLE10mins yields results closest to observations, 

effectively capturing flood trends and peak timing, highlighting the 

importance of high-frequency rainfall inputs.  

8. Compared to larger basins, smaller basins like Dongshan are more sensitive 

to precipitation accuracy, where even minor forecast errors in rainfall fields 

can directly affect flood extent, emphasizing the need for precise spatial and 

temporal resolution. Although MAPLE struggles to capture localized 

convective systems and introduces some errors, its stable and smoothed 

rainfall input still offers value in flood simulations, particularly for 

operational forecasting scenarios. 

Overall, the above results highlight the critical role of high-resolution 

precipitation data for accurate flood modeling and early warning. Results show 

that rainfall intensity distribution, temporal resolution, and nowcast accuracy 

significantly influence flood extent and timing. Validation using multiple data 

sources confirms the reliability of the 3Di model, though performance varies by 

region and data source. Among the strategies of QPE and nowcasts, high temporal 

resolution precipitation data consistently demonstrate higher and earlier 

inundation peaks in flood simulation, particularly in smaller, sensitive basins. 

6.2 Future work 

To enhance the accuracy and applicability of flood simulation and 

forecasting, several directions can be explored in future research. First, 

incorporating more diverse and higher-quality datasets can improve the model's 
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ability to capture real-world conditions. Extending the initial simulation period 

and accounting for soil saturation levels can help better represent the initial 

hydrological state of the system. Additionally, as tidal effects influence the 

drainage rate, integrating tidal data into the model could further refine simulation 

accuracy, especially in coastal or estuarine areas. 

This study primarily focuses on typhoon-related events and northeasterly 

winds. Future work can expand the range of test cases to include different weather 

patterns, such as Mei-yu fronts or other frontal systems. Furthermore, applying 

the methodology across various geographical regions, including urban and rural 

areas of different scales, can help evaluate the generalizability of the model and 

assess the added value of high temporal resolution data under different 

environmental settings.  

In addition to nowcasting systems like MAPLE, future studies may explore 

the performance of various numerical weather prediction (NWP) models, such as 

WRF, in simulating precipitation events at different temporal and spatial scales. 

Comparing deterministic and ensemble forecast outputs can help evaluate their 

suitability as inputs for flood modeling under diverse meteorological conditions. 

Moreover, while this study primarily focuses on short-term rainfall 

forecasting and nowcasting applications, extending the forecasting horizon to 

medium- or long-range periods (e.g., 1–5 days) may offer valuable insights for 

early warning and preparedness. Such efforts would allow flood risk assessments 

under more uncertain but proactive scenarios, contributing to the development of 

an integrated, multi-scale flood forecasting system. 
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Table  

Table 1. The list of selected events. 
 

NAME START 

TIME 

SIMULATION 

HOURS 

LOCATION 

Case1 Typhoon Gaemi  2024/07/24 

04UTC 

24 Dongshan  

Case2 Typhoon Krathon  2024/10/03 

08UTC 

12 Dongshan  

Case3 Typhoon Trami 

and Northeasterly  

2024/10/24 

04UTC 

24 Dongshan 

Case4 Northeasterly and 

Typhoon Toraji 

2024/11/12 

04UTC 

24 Dongshan 

Case5 Typhoon Gaemi  2024/07/24 

12UTC 

24 Kaohsiung 

Case6 Typhoon Krathon  2024/10/03 

00UTC 

12 Kaohsiung 

Table 2. The parameters setting of 3Di. 

Model Dongshan Kaohsiung 

Area (𝑘𝑚2) 112.728 939.473 

DEM (m) 1 1 

Simulation time step 10s 10s 

Output time step 300s 300s 
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Table 3. The VET setting of MAPLE 

VET parameter setting 

Number of maps 3 

Time difference between each map 20 

Amount of smoothing 3×3 

Reflectivity threshold 5 

Number of scaling guesses 5 

Vector density of scaling guesses 144×144 

Relative weightings for 𝛽and 𝛾 0.5 and 1000 

 

 

 

 

 

 

 

 

 

Table 4. The data availability in different cases. 
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Table 5 Four categories of the confusion matrix 

    Observed 

Forecast 

O ≥ Threshold O < Threshold 

F ≥ Threshold Hit(a) False alarm(c) 

F < Threshold Miss(b) Correct negative(d) 

 

Table 6. The number of EMIC in the selected events. 

Events EMIC records 

2024-07-24, Dongshan 7 

2024-10-03, Dongshan 26 

2024-10-24, Dongshan 0 

2024-11-12, Dongshan 0 

2018-08-23, Kaohsiung 686 

2024-07-24, Kaohsiung 1183 

2024-10-03, Kaohsiung 294 

 

Table 7. The number of detections and detection rate by 3Di. 

Events EMIC records The number of 

detections 

Detection rate 

2018-08-23, 

Kaohsiung 

686 549 80% 

2024-07-24, 

Kaohsiung 

1183 1129 95% 

2024-10-03, 

Kaohsiung 

294 235 80% 
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Figure 

 

  Figure 1. Accumulated rainfall during flood simulation time in six cases. 

b a 

c d 

e f 
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Figure 2. An illustration of a computational cell using quad-tree refinements and a 

water depth defined on the sub-grid. (adopted from 3Di documentation). 
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Figure 3. Basic information of Dongshan used in the 3Di model. (a) The DEM. (b) 

roughness map. (c) Infiltration map. 
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Figure 4. Basic information of Kaohsiung used in the 3Di model. (a) The DEM. (b) roughness 

map. (c) Infiltration map. 
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Figure 5. The positions of radars in Taiwan. Red dots are C-band radars, blue 

dots are S-band radars. 
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Figure 6. The distribution of rainfall intensity during significant rainfall 

events in (a) Northeastern and (b) Southwestern Taiwan. 

a 

b 
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Figure 7. The calculated 9 area of Figure 6 
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Figure 8. Experiment setting in this study. 
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Figure 9. The overall workflow of the inundation simulations. 
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Figure 10. The locations of flood sensors in (a) Dongshan and 

(b) Kaohsiung. 

b 

a 
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Figure 11. Histogram analysis based on SAR images in (a) northeastern and 

(b) southwestern Taiwan. 

a 

b 
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Figure 12. The flood area of the 3 scenarios with a total precipitation 20 mm. 
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Figure 13. The percentage of flooded and unflooded areas under two different 

rainfall distributions. (a) Dongshan. (b) Kaohsiung. 

a 

b 
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Figure 14. Water depth difference of varying precipitation 

amount. (a) Dongshan. (b) Kaohsiung. 

a 

b 
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Figure 15. The distribution of EMIC and the maximum water depth simulated 

by 3Di in the events. (a) 2018-08-23 (b) 2024-07-24 (c) 2024-10-03 

a
 

b
 

c 
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Figure 16. Accuracy compared with flood sensors. 
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Figure 17. Performance diagram, flood sensors used as reference. 
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Figure 18. Water area detected by SAR and the distribution of EMIC. 

Light-green circle is effected by terrain. Yellow circle is the main urban 

area. Pink circle shows a good match of SAR detection and EMIC, 

therefore, Red box shows the calculated regions of verification.  
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Figure 19. Accuracy compared with SAR images. 
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Figure 20. Performance diagram, SAR data used as reference. 
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Figure 21. FSS score with neighborhood size from 11 to 31. 
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Figure 22. The hourly average difference of QPESUMS10M and QPESUMS 
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Overestimation 

Underestimation Underestimation 

Overestimation 
Overestimation 

Figure 23. The scatter plot of QPESUMS10M sum up to 1 hour and QPESUMS. 
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Figure 24. The flood area using QPESUMS10M and QPESUMS. The gray 

bar is the maximum 10-minute rainfall in the basin. 
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a 
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Figure 25. The flood area using QPESUMS10M and 

QPESUMS. The gray bar is the maximum 10 minute rainfall 

in the basin. 

b 
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Figure 26. Heat map of SCC evolution. 
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Figure 27. RMSE evolution. 
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Figure 28. The inundation area across events. 
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Figure 29. Observed and MAPLE forecast reflectivity, and convert to rainfall field 

by the Z-R relationship in the event 2024-07-24. 
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Figure 30. Observed and MAPLE forecast reflectivity, and convert to rainfall 

field by the Z-R relationship in the event 2024-10-03. 
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Figure 31. Observed and MAPLE forecast reflectivity, and convert to rainfall 

field by the Z-R relationship in the event 2024-10-03. 
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Figure 32. Observed and MAPLE forecast reflectivity in the event 2024-10-24. 
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Figure 33. The difference between MAPLE10mins and QPESUMS10M. 


